HDL Coder™ Release Notes

MATLAB&SIMULINK?

=) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Release Notes
© COPYRIGHT 2012-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2019a
Model and Architecture Design 1-2
Protected Model Code Generation: Share protected Simulink
models with the option to allow HDL code generation 1-2
Double-precision floating-point support for HDL code generation
from Simscapemodels 1-2
Validation logic verification for functional equivalence of HDL
implementation model with Simscape model 1-3
Simscape to HDL Workflow Reference Applications 1-3
Enhancements to single-precision native floating-point operators
SUPPOI . .ttt e 1-3
Additional block support with double-precision native floating-
point code generation 1-4
Additional Verilog constructs supported with HDL import 1-5
HDL Coder contextual tab in Simulink Toolstrip tech preview
... 1-5
HDL Coder Modeling Guidelines in Documentation 1-6
Block Enhancements 1-7

Streaming Matrix Multiply and Streaming Matrix Inverse
Reference Applications 1-7
Partition Offset parameter support in For Each Subsystem block

... 1-7
Enhancements to Assignment and Selector blocks 1-7
Enhancements to Discrete FIR Filter HDL Optimized block and

frame-based Discrete FIR Filterblock 1-8
LTE Reference Applications: Transmitter example and TDD

support for SIBrecovery, 1-9
OFDM Modulator block and LTE and 5G Symbol Modulator

blocks 1-9

Increased kernel size limits for Image Filter block 1-10

iii

iv

Contents

Code Generation and Verification 1-11

Customization of constant name in VHDL code generated for

LookupTabledata 1-11
Optimized counters in generated HDL code for Stateflow
temporallogic 1-12
HDL Coder Workflow: Enhanced options for model generation
.. 1-13
HDL Code Generation: Diagnostics tab renamed to Advanced
.. 1-13
Speed and Area Optimizations 1-15
Improvements to element-wise matrix transformation 1-15
Optimization of unconnected port for removing redundant logic
indesign ... 1-15
IP Core Generation and Hardware Deployment 1-16
DUT AXI4 slave interface connection to multiple AXI Master
interfaces in reference designs 1-16
Default system with External DDR4 Memory Access reference
deSIgn . .o e 1-16
Generation of HDL IP core without AXI4 slave interfaces . . . 1-16
Improved synchronization of global reset signal to IP core clock
domain 1-17
Minimization of clock enable signals in IP Core Generation
WOTKEIOW . . .o 1-17
Updates to supported software 1-18
R2018b
Model and Architecture Design 2-2
Hardware Acceleration of Plant Models: Generate HDL code
from Simscape Electrical switched linear models 2-2
Verilog Import: Import synthesizable Verilog code and generate
Simulinkmodel 2-2

Double-Precision Native Floating Point: Generate target-
independent synthesizable RTL from double-precision
floating-pointmodels 2-3
Custom latency specification for native floating-point operators

... 2-3
Enhancements to supported blocks and complex data types with
single-precision native floating-point 2-3
Enhancements to output delay absorption for complex
multipliers with single-precision native floating-point 2-4
Block Enhancementsciiuuuunnnn 2-7
Enhancements to matrix support for HDL code generation ... 2-7
HDL code generation support for Probe block and blocks that
detect change in input signalvalue 2-7
HDL code generation support for Foreach Subsystem with
Minimize global resets setting 2-7
HDL Coder support for virtual bus containing nonvirtual subbus
... 2-8

Viterbi Decoder and Depuncturer Block: Decode bitstreams by

using the Viterbi algorithm with puncturing, terminated, and

truncated modes (requires LTE HDL Toolbox) 2-8
HDL code generation support for complex input signals or

complex coefficients of frame-based Discrete FIR Filter and

FIR Decimation blocks (requires DSP System Toolbox) 2-9
Discrete FIR Filter HDL Optimized: Select transposed

architecture, optimize symmetric and antisymmetric

coefficients, and enable reset port (requires DSP System

ToolbOX) . ot ot 2-9

Code Generation and Verification 2-10

Test Point Integration with FPGA Data Capture: Use FPGA data
capture to specify signals to be captured during FPGA testing
by using Test Points in Simulink 2-10
User-Interface Improvements to HDL Workflow Advisor and
HDL Code Generation Pane in Configuration Parameters
Dialog BOXt 2-10

Speed and Area Optimizations 2-14

Enhancements to optimization that removes redundant logic in
deSigm . ..
Streaming operation modes of Multiply-Accumulate block . .

Different output latencies for designs with clock-rate pipelining
enabled at outputports, 2-14

IP Core Generation and Hardware Deployment 2-17

Xilinx Zynq UltraScale+ MPSoC Targeting: Select from
predefined targets and reference designs to generate code

for MPSoCdevicesovviiinnin... 2-17
Multirate IP Core Generation: Target AXI4-Stream and AXI4
Master interfaces for designs with multiple sample rates . 2-17

PCle MATLAB as AXI Master with External DDR4 Memory
Access reference design for Intel Arrial0 GX FPGA

Developmentkit 2-17
Timing failure check in Build FPGA Bistream step of IP Core

Generation workflow 2-19
Support for read back of AXI4 write registers in IP Core

Generation workflow 2-19

Microsemi Libero SoC Targeting: Synthesize and implement
generated code on Microsemi FPGAs by using HDL Workflow

AdViSOT 2-20
Speedgoat 10 Modules 10321 and I0321-5 being replaced . . 2-21
Updates to supported software 2-22

R2018a

Model and Architecture Design 3-2

HDL Model Checker integrated with Model Advisor 3-2

Updates to model checksin HDL Coder 3-2
Enhanced Radix-4 algorithm for Divide and Reciprocal blocks in

Native Floating Pointmode 3-3
Improved shift-and-add algorithm for exponential and

hyperbolic functions in Native Floating Point mode 34
HDL code generation support for all rounding modes of Data

Type Conversion block in Native Floating Point mode 34
Floating-point control for Multiport Switch and Selector blocks

... 3-4
Block Enhancements 3-5

vi Contents

Matrix Support: Generate HDL code directly from two-

dimensional matrix data types and operations 3-5
Additional blocks and block modes supported for HDL code
generation 3-5

Bit-Natural FFT Output: Directly access the bit-natural output
from the frame-based FFT/IFFT (Requires DSP System

Toolbox) 3-6
LTE OFDM demodulation and Gold sequence generation blocks
(Requires LTE HDL Toolbox) 3-6
Additional pipelining of HDL-optimized Complex to Magnitude-
Angle (Requires DSP System Toolbox) 3-6
5G filtered-OFDM modulation reference application (Requires
LTEHDL ToolboxX) 3-7
Code Generation and Verification 3-8

Line-Level Traceability: Navigate directly between Simulink

blocks and corresponding lines of generated HDL code . . . 3-8
Microsemi FPGA Support: Specify Microsemi Libero SoC as

Synthesis Tool and generate HDLcode 3-8
Concise summary of synthesis results displayed in HDL

Workflow Advisor 3-9
New Code Generation Report: View more information and

navigate through code generation results more easily 3-9

Speed and Area Optimizations 3-12

Critical Path Estimation with Native Floating Point: Report
critical path for designs with single-precision floating-point

operations i e 3-12
Simplification of constant operations and other optimizations for

fixed-point and floating-point arithmetic operations 3-12
Improvement to reduction of matching delays in clock-rate

pipelining regions across hierarchical boundaries 3-12
MaxOversampling and MaxComputationLatency parameters

beingremoved 3-14

IP Core Generation and Hardware Deployment 3-15

AXI4-Stream for Intel FPGA: Generate IP cores with the AXI4-

Stream interface targeting Intel FPGAs 3-15
Intel SoC Reference Design: Target the Intel Arria 10 SoC

Development Kit with DDR4 external memory access 3-15

viii

Contents

Simulink test point port mapping in IP Core Generation and

Simulink Real-Time FPGA I/O workflows 3-16
Audio Reference Design Example on ZYBO Board: Create

custom reference design to run audio algorithm on ZYBO

board 3-16
IP Core Generation of I2C Master Controller Example: Generate

IP core for Stateflow-Based I2C Master Controller to

configure Audio Codecchip 3-16
Ethernet programming method being removed 3-17
Updates to supported software 3-17

R2017b
Model and Architecture Design 4-2
Model Advisor Checks: Check and update your Simulink model

for HDL code generation compatibility 4-2
Simulink Test Points in HDL: Debug internal signals by

automatically routing the signals to top-level HDL ports ... 4-2

Floating-point Support for Simulink Real-Time FPGA I/O:
Generate single-precision floating point HDL for
communication over the Simulink Real-Time PCle Interface
... 4-3
Additional single-precision floating-point operators and block
SUPPOI . .ot e 4-3
Improvements to native floating-point operators and algorithms
... 4-4
Input Range Reduction setting for Trigonometric Function
blocks in native floating-pointmode 4-4
Block-level latency customization for Discrete Transfer Function
and Discrete Time Integrator blocks with native floating-point

... 4-5
Block Enhancements 4-6
Minimum Resource FFT/IFFT: Reduce resource usage with the
Burst Radix 2 architecture of the HDL-Optimized FFT
(requires DSP System Toolbox) 4-6
Support for scalar addressing mode with vector data input to
hdl.RAM System Object 4-6

New HDL RAMs Block Library and hdl. RAM System Object

basedblocks 4-6
Synchronous versions of Unit Delay blocks with reset and
enable ports in Discrete block library 4-7

Bilateral filter, bird's-eye-view transform, and line buffer for

vision applications 4-8
HDL code generation support for Bus Element port blocks ... 4-9
One-hot and two-hot encoding schemes for enumeration types
... 4-9
Custom header and footer comments in generated HDL code
... 4-9
Code Generation and Verification 4-11
Changes to HDL Code Generation Panel in Configuration
Parameters Dialog Box 4-11
Speed and Area Optimizations 4-12
Vector Input Multiply-Accumulate (MAC) Block: Map arithmetic
operations efficiently to FPGA DSPslices 4-12
Hierarchical Clock Rate Pipelining: Apply clock rate pipelining
across hierarchical boundaries 4-12
Support for enable-based multicycle path constraints 4-13
Clock-rate pipelining enhancements 4-13
IP Core Generation and Hardware Deployment 4-15

AXI4 Master Interface: Facilitate communication between your
design and external memory by using the AX14 Master
protocol for more flexible dataaccess 4-15
IP Core Generation Support for Xilinx System Generator:
Generate an HDL IP core for DUT containing System

Generatorblocks 4-15
INOUT port type support for External Port interface in IP Core

Generation workflow 4-16
Faster Simulink Real-Time FPGA 1/O model build time with

version register in generated IPcore 4-16
Default system with External DDR3 Memory Access reference

deSigm ... 4-16
Updates to supported software 4-17
HDL Coder support packages renamed 4-17

ix

X

Contents

Model and Architecture Design 5-2

HDL Floating Point Operations Library: Easily find additional
and existing single-precision floating-point blocks supported

for HDL code generation 5-2
Floating-Point Latency Customization at Block-Level 5-2
Additional Block and System Object Support with Native

Floating Point 5-3
Custom reference model prefix specification 5-4
GenerateWebview parameter name changed to

HDLGenerateWebview 5-4
Comments in HDL code for Simulink blocks with text

annotations i 5-5

Block Enhancements 5-7

For Each Subsystems: Reduce block replication and improve
code reuse in HDL-targeted designs 5-7
HDL Optimized Filters: Model and generate optimized hardware
implementations for FIR filters (requires DSP System
ToolboX)o 5-7
HDL Channelizer Block and System Object: Isolate narrowband
channels from a wideband signal and generate HDL with
efficient multiplier usage (requires DSP System Toolbox) . . 5-8
Gigasample per Second (GSPS) Signal Processing: Increase
throughput of FIR decimation algorithms by using frame

Mput ... e 5-8
Enhancements to MATLAB Function block support in

synchronous subsystems 5-8
HDL Coder support for blocks that support bus signal treated as

VECHOT . ot 5-9
HDL code generation support for Bus Assignment block with

nonvirtualbus 5-9
Additional HDL Coder bus support 5-10
HDL code generation support for System Objects with

enumeration types e 5-10

Code Generation and Verification 5-11

Native Floating-Point Testbench: Generate SystemVerilog DPI,
cosimulation, and FPGA-in-the-loop test benches with single-

precision data types (requires HDL Verifier) 5-11
More fixed-size variable information in Fixed-Point Conversion
stepof HDLCoderAppcovviiiiiinn.. 5-11
Comments in generated HDL code for MATLAB System blocks
.. 5-12
Global reset signals minimization in generated HDL Code . . 5-12
HDL code generation support for DUT subsystem with custom
HDL properties i 5-12
Changes in HDL Code Generation Panel in Configuration
Parameters Dialog Box 5-12
Syntax Highlighting of Generated HDL Code in HTML Report
.. 5-13
Speed and Area Optimizations 5-14
Improvements to delay balancing in multirate regions 5-14
Functionality Being Removed or Changed 5-14
IP Core Generation and Hardware Deployment 5-15
Data Type Support for AXI4 Slave: Map floating-point signals
and vector signals to AXI4 slave interfaces in IP core
generation e 5-15
Incremental Vivado Synthesis: Enable IP caching for faster
synthesis of Xilinx Vivado reference designs 5-15
IP core generation support for Altera Megafunction 5-16
Custom IP repository specification 5-16
Xilinx Virtex-2 FPGA board support being removed 5-17
Updates to supported software 5-17
R2016b
Model and Architecture Design 6-2

Native Floating Point: Generate target-independent
synthesizable RTL from single-precision floating-point models

xi

xii

Contents

HDL Coder support for tunable parameters in data dictionary

... 6-3

Generic ports for DUT mask parameters 6-3
Simulink diagnostic suppressor option 6-3
Block Enhancementsc0iiuuuuunnn 6-6

Gigasample Per Second (GSPS) Signal Processing: Increase
throughput of HDL code generated from Discrete FIR Filter
and Integer Delay blocks by using frame input 6-6

Bit-reversed input order for HDL-optimized FFT 6-6

High-throughput polyphase filter bank for HDL example 6-6

HDL support for reset port on Discrete FIR Filter 6-7

HDL Coder support for array of buses 6-7

Synchronous behavior for Resettable Subsystem with State
Controlblock 6-7

HDL optimized Sine and Cosine blocks 6-7

Simpler method to call System objects 6-8

Code Generation and Verification 6-9

Logic Analyzer: Visualize, measure, and analyze transitions and

states over time for Simulink signals 6-9
HDL Coder support for creating and attaching configuration

SELS . 6-9
VHDL Architecture Name available in Configuration Parameters

dialogbox 6-9
RAM with generic ports enhancement 6-9
Stateflow comments generated as comments in HDL 6-10
Tolerance check for floating-point libraries 6-11
Code Generation Report enhancements 6-12
Comprehensive documentation for HDL coding standard rules

.. 6-12

More discoverable logs and reports for fixed-point conversion in

HDL Coderappviii i 6-12
Enhancements in generated model for Lookup Tables 6-13
Target and Optimizations pane in HDL Coder Configuration

Parameters 6-14

Link to Code Generation Report after HDL code generation . 6-14

Speed and Area Optimizations 6-15

Adaptive Pipelining: Specify synthesis tool and target clock
frequency for automatic pipeline insertion and balancing

.. 6-15
Clock-rate pipelining enhancements 6-15
Resource sharing enhancements 6-16
Delay balancing failures reported as errors 6-16
Optimization of Delay blocks with nonzero initial condition .. 6-17
Initialization script specification for Delay blocks without reset

.. 6-17

IP Core Generation and Hardware Deployment 6-19

AXI4-Stream Video Interface: Generate HDL code with the AXI4-

Stream Video interface by using the IP core generation

WOrkflow 6-19
Customizable FPGA floating-point target configuration 6-19
Additional block support for FPGA floating-point target library

MAPPING .« v et et e 6-20
Default video system reference design 6-20
Custom reference design enhancements 6-20
IP Core Generation workflow for Xilinx and Altera FPGA devices

.. 6-21
Additional FPGA board support for IP Core Generation workflow

.. 6-22
Target clock frequency specification 6-22
Simulink Real-Time FPGA I/O workflow support for Xilinx Vivado

.. 6-22
Speedgoat 10333-325K target hardware support 6-23
Updates to supported software 6-23

R2016a
Model and Architecture Design 7-2
Gigasample per Second (GSPS) Signal Processing: Increase
throughput of HDL-optimized FFT and IFFT algorithms using
frameinput 7-2
Tunable and nontunable parameter enhancements 7-2

Reusable HDL code enhancements for subsystems with tunable
mask parameters 7-3

xiii

xiv

Contents

HDL Coder support for nondirect feedthrough setting in
MATLAB Functionblocks 7-3

Block Enhancements 7-4

Synchronous Subsystem Toggle: Specify enable and reset
behavior for cleaner HDL code by using State Control block

... 7-4
Region-of-interest selection and grayscale morphology 7-5
Nested bus support enhancements 7-6
Block support enhancements 7-6

Code Generation and Verification 7-8

Faster Test Bench Generation and HDL Simulation: Generate
SystemVerilog DPI test benches for large data sets with HDL

Verifier 7-8
Code Generation Report enhancements 7-8
Changes to Fixed-Point Conversion Code Coverage 7-9
Progress indicator for HDL test bench generation 7-10
Test bench generation with updated model stop time 7-11
Performance improvement for MATLAB to HDL test bench

generation e 7-11
Coding standard check for length of control flow statements in a

processblock 7-11
Warnings for non-ASCII characters in generated HDL code .. 7-11
Japanese translation for resource report 7-12

Speed and Area Optimizations 7-13
Resource Sharing Enhancements: Share multipliers and gain

operations that have different data types 7-13

Biquad Filter block participates in subsystem HDL optimizations

.. 7-13
More functions for Multiply-Add block to map to DSP 7-13
Generation of Multiply-Add blocks for complex multiply

Operationst e 7-14
RAM mapping for pipeline and floating-point delays 7-14
Initialization script generated for Delay blocks without reset for

ModelSim simulation 7-14

IP Core Generation and Hardware Deployment 7-15

Hard Floating-Point IP Targeting: Generate HDL to map to
Altera Arria 10 floating-point units at user-specified target

freqUENCY . ..ot 7-15
End-to-end scripting for Simulink Real-Time FPGA I/O workflow
.. 7-15
SoC device programmed by using Ethernet connection 7-16
Custom programming method for IP Core Generation workflow
.. 7-16
Interface connection name and type for custom reference
deSignS . ..ot e 7-16
Updates to supported software 7-16
Automatic generation of FPGA top-level wrapper based on
WOrkflow 7-16
R2015aSP1
Bug Fixes
R2015b
Model and Architecture Design 9-2

Model Arguments: Parameterize instances of model reference
blocks . .. 9-2
Integration with Xilinx Vivado System Generator for DSP blocks

... 9-2
struct input and output for top-level MATLAB design function
... 9-2
Tunable parameters in MATLAB Function block 9-3
Output initialization requirement for Stateflow Moore Charts
... 9-3
Enforce ASCII character requirement for model property values
... 9-3
Block Enhancements 9-5

xvi

Contents

Expanded Bus Support: Generate HDL for enabled or triggered
subsystems with bus inputs and for black boxes with bus I/O

Library Browser view shows blocks supported for HDL code
generation e 9-5
Trigonometric Function block with sin or cos function can have

vectorinputs 9-6
Discrete FIR Filter supports HDL optimizations 9-6
HDL-optimized FIR Rate Conversion block and System object

... 9-6
Code Generation and Verification 9-7
HDL Coder Configuration Parameters in list view 9-7

Support for configuration parameter Default parameter
behavior 9-7

Test bench performance improvements with file [/O 9-7

Image processing examplesiii.. 9-8

Speed and Area Optimizations 9-9

Quality of Results Improvement: Stream and share resources

more broadly and efficiently 9-9
Multiply-Add block 9-9
Hierarchy flattening for masked subsystems and user library

blocks 9-10
Loop optimization improvement 9-10
Complex Gain speed optimization 9-10
Redesigned serializer for streaming and resource sharing . . 9-10
Tapped Delay optimization 9-10

IP Core Generation and Hardware Deployment 9-11
Tunable Parameters: Map to AXI4 interfaces to enable hardware
run-time tuning by the embedded software on the ARM

PLOCESSOT v vttt e e e e e e e e e e e 9-11
End-to-end scripting from design through IP core generation,

FPGA Turnkey, and generic ASIC/FPGA workflows 9-11
Synthesis objective for synthesis tool target optimization ... 9-11
AXI4-Stream vectorinterface 9-12
Connect IP core with other IP blocks in custom reference

deSIgNS . .ot 9-12
Kintex UltraScale and Virtex UltraScale device family support in

generic ASIC/FPGA and IP core generation workflows . . . 9-12

Model and Architecture Design 10-2
Localized control using pragmas for pipelining, loop streaming,
and loop unrolling in MATLABcode 10-2
Model templates for HDL code generation 10-3
Tunable parameter data type and model reference support
enhancementsuiiiuirrrrr 10-5
Include custom or legacy code using DocBlock 10-5
Single library for VHDL code generated from model references
.. 10-5
Timing controller architecture and postfix options in
Configuration Parameters dialog box and HDL Workflow
Advisor 10-6
Functionality Being Removed or Changed 10-6
Block Enhancements 10-8
Enumeration support at DUT ports 10-8
Map to multiple RAM banks 10-8
Code generation for bus output from Bus Selector and Constant
blocks . .. 10-8
Initial condition for Deserializer1D 10-8
Block support enhancements 10-8
Code generation for predefined System objects in MATLAB
Systemblock 10-9
Specify filter coefficients using a System object 10-9
Libraries for HDL-supported DSP System Toolbox and
Communications Toolbox blocks 10-9
Support for image processing, video, and computer vision
designs in new Vision HDL Toolbox product 10-10
Support for ‘inherit via internal rule’ data type setting on FIR
Decimation and Interpolation blocks 10-10
Code Generation and Verification 10-11
Coding standard check for X and Z constants 10-11
Coding style improvements 10-11
Example HDL implementation of LTE OFDM modulator and
detector with LTE Toolbox 10-11

xvii

xviii

Contents

Speed and Area Optimizations 10-12

Critical path estimation without running synthesis 10-12
Clock-rate pipelining enhancements 10-12
Partitioning for large multipliers to improve clock frequency and
DSPreuseonthe FPGA 10-13
Highlighting for blocks in the model that prevent retiming
... 10-13
Resource sharing for adders and more control over shareable
TESOUICES « v o v vt ettt e e e et e e e e 10-13
Speed and area optimizations for designs that use Unit Delay
Enabled, Unit Delay Resettable, and Unit Delay Enabled
Resettable 10-13
Resource sharing for multipliers and adders with input data
types in differentorder, 10-14
Vector streaming for MATLABcode 10-14
IP Core Generation and Hardware Deployment 10-16
Mac OS X platform support 10-16
AXI4-Stream interface generation for Xilinx Zynq IP core .. 10-16
Custom reference design and custom SoC board support . . 10-16
Automatic iterative optimization for IP core generation and
FPGA Turnkey workflows 10-16
Speedgoat 10331-6 digital I/O interface target 10-17
IP core settings saved withmodel 10-17
Updates to supported software 10-17
R2014b
Model and Architecture Design 11-2
Custom or legacy HDL code integration in the MATLAB to HDL
WOrkflow 11-2
Model reference as DUT for code generation 11-2
Tunable parameter support for Gain and Constant blocks ... 11-2
Code generation for Stateflow active state output 11-2
Clock enable minimization for code generated from MATLAB
deSIgNS .« v vt e 11-2

HDL Block Properties dialog box shows only valid architectures

.. 11-3
2-D matrix types in HDL generated for MATLAB matrices ... 11-3
Block Enhancements 11-4

Code generation for HDL optimized FFT/IFFT System object and
HDL optimized Complex to Magnitude-Angle System object
andblock 11-4

Added features to HDL optimized FFT/IFFT blocks, including

reducedlatency 11-4
HDL Reciprocal block with Newton-Raphson Implementation
.. 11-4
Serializer1D and Deserializer1D blocks 11-5
Additional blocks supported for code generation 11-5
Composite user-defined System object support 11-6
System object output and update method support 11-6
hdlram renamed to hdLRAM 11-6
Functionality Being Removed or Changed 11-6
Code Generation and Verification 11-7
Coding standards customization 11-7
HDL Designer script generation 11-7
Traceable names for RAM blocks and port signals 11-7
for-generate statements in generated VHDL code 11-8
Validation model generation regardless of delay balancing
TesultS ... 11-8
Speed and Area Optimizations 11-9
Clock-rate pipelining to optimize timing in multi-cycle paths
.. 11-9
RAM mapping for user-defined System object private properties
.. 11-9
Highlighting for feedback loops that inhibit optimizations ... 11-9
Optimizations available for conditional-execution subsystems
... 11-10
Variable pipelining in conditional MATLAB code 11-10
Optimizations available with UseMatrixTypesInHDL for
MATLAB Function block 11-10
IP Core Generation and Hardware Deployment 11-11

Xix

Support for Xilinx Vivado 11-11

IP core generation for Altera SoC platform 11-11
Custom HDL code for IP core generation from MATLAB ... 11-11
Target platform interface mapping information saved with
model 11-11
Documentation installation with hardware support package
... 11-12
R2014a
Model and Architecture Design 12-2
HDL block library in Simulink 12-2
Persistent keyword not needed in HDL code generation 12-3
Negative edge clocking 12-3
Bidirectional port specification 12-3
Port names in generated code match signal names 12-3
ModelReference default architecture for Model block 12-4
Reset for timing controller 12-4
Reset port optimization 12-4
Functionality Being Removed or Changed 12-5
Block Enhancements 12-7
Code generation for enumeration data types 12-7
Code generation for FFT HDL Optimized and IFFT HDL
Optimized blocks 12-7
Bus support improvements 12-7
Variant Subsystem support for configurable models 12-7
Trigger signal can clock triggered subsystems 12-8
2-D matrix types in code generated for MATLAB Function block
.. 12-8
64-bitdatasupport 12-8
HDL code generation from MATLAB System block 12-8
System object methods in conditional code 12-8
Dual Rate Dual Port RAM block 12-9
Additional blocks and block implementations supported for code
generationt e 12-9
Code Generation and Verification 12-11

XX Contents

Errors instead of warnings for blocks not supported for code

generation e 12-11
Ascent Lint script generation 12-11
Incremental code generation and synthesis 12-11
Automatic C compilersetup 12-12

Speed and Area Optimizations 12-13
RAM mapping scheduler improvements 12-13
Performance-prioritized retiming 12-13
Retiming without moving user-created design delays 12-13
Resource sharing factor can be greater than number of

shareable resources 12-13
Reduced area with multirate delay balancing 12-14
Serializer-deserializer and multiplexer-demultiplexer

optimization i, 12-14

IP Core Generation and Hardware Deployment 12-15
ZC706 target for IP core generation and integration into Xilinx

EDKprojectot 12-15
Automatic iterative clock frequency optimization 12-15
Synthesis attributes for multipliers 12-15
Custom HDL code for IP core generation 12-15
Synthesis and simulation tool addition and detection after

opening HDL Workflow Advisor 12-16
xPC Target is Simulink Real-Time 12-16
Updates to supported software 12-16

R2013b

Model and Architecture Design 13-2
Model reference support and incremental code generation

.. 13-2
Code generation for subsystems containing Altera DSP Builder

blocks 13-2
Module or entity generation for local functions in MATLAB

Functionblock 13-2
Reset port optimization 13-3

xxi

Load constants from MATfiles 13-3

Block Enhancements0ciuuuuann 13-4
Code generation for user-defined System objects 13-4

Bus signal inputs and outputs for MATLAB Function block and
Stateflowcharts 13-4
HDL Counter has specifiable start value 13-4
Maximum 32-bit address for RAM 13-4
Removing HDL Support for NCOBlock 13-5
Code Generation and Verification 13-6

Coding style improvements according to industry standard

guidelines 13-6
Coding standard report target language enhancement and text
fileformat 13-6
UI for SpyGlass, Leda, and custom lint tool script generation
.. 13-6
File I/O to read test bench data in VHDL and Verilog 13-7
Floating point for FIL and HDL cosimulation test bench
generation i e 13-7
Fixed-point file name change 13-7
Speed and Area Optimizations 13-8
RAM inference in conditional MATLABcode 13-8
Coding style for improved ROM mapping 13-8
Pipeline registers between adder or multiplier and rounding or
saturationlogic 13-8
Distributed pipelining improvements with loop unrolling in
MATLAB Function block 13-8
IP Core Generation and Hardware Deployment 13-9
IP core integration into Xilinx EDK project for ZC702 and
ZedBoard 13-9
FPGA Turnkey and IP Core generation in MATLAB to HDL
workflow 13-9
Synthesis tool addition and detection after MATLAB-to-HDL
projectcreation 13-10
Synthesis script generation for Microsemi Libero and other
synthesistools 13-10

xxii Contents

Floating-point library mapping for mixed floating-point and

fixed-pointdesigns 13-10
xPC Target FPGA I/O workflow separate from FPGA Turnkey
WOorkflow 13-10
AXM-A75 AD/DA module for Speedgoat 10331 FPGA board
... 13-11
Speedgoat 10321 and 10321-5 target hardware support ... 13-11
Support package for Xilinx Zyng-7000 platform 13-11
Support package for Altera FPGAboards 13-11
Support package for Xilinx FPGA boards 13-12
Additional FPGA board support for FIL verification, including
Xilinx KC705 and Altera DSP Development Kit, Stratix V
edition 13-13
R2013a
Model and Architecture Design 14-2
Code generation for System objects in a MATLAB Function
block 14-2
Output folder structure includes model name 14-2
Prefix for module or entityname 14-2
Functionality beingremoved 14-3
Block Enhancements 14-4
Single rate Newton-Raphson architecture for Sqrt, Reciprocal
STt . o 14-4
Additional System objects supported for code generation . . . 14-4
Additional blocks supported for code generation 14-4
Code Generation and Verification 14-6
Static range analysis for floating-point to fixed-point conversion
.. 14-6
Cosimulation and FPGA-in-the-Loop for MATLAB HDL code
generation 14-6
HDL coding standard report and lint tool script generation
.. 14-6
File I/O to read test bench datain Verilog 14-7

xxiii

Speed and Area Optimizations 14-8

User-specified pipeline insertion for MATLAB variables 14-8
Resource sharing and streaming without over clocking 14-8
Resource sharing for the MATLAB Function block 14-8
Finer control for delay balancing 14-9
Complex multiplication optimizations in the Product block
.. 14-9
IP Core Generation and Hardware Deployment 14-10
Generation of custom IP core with AXI4 interface 14-10
Coprocessor synchronization in FPGA Turnkey and IP Core
Generation workflows 14-10
Speedgoat 10331 Spartan-6 FPGA board for FPGA Turnkey
WOTKElOW 14-10
R2012b
Input parameter constants and structures in floating-point to
fixed-point conversion 15-2
RAM, biquad filter, and demodulator System objects 15-2
HDL RAM System object 15-2
HDL System object support for biquad filters 15-2
HDL support with demodulator System objects 15-2
Generation of MATLAB Function block in the MATLAB to HDL
workflow 15-3
HDL code generation for Reed Solomon encoder and decoder,

CRC detector, and multichannel Discrete FIR filter 15-3
HDL code generation 15-3
Multichannel Discrete FIR filters 15-3

Targeting of custom FPGA boards 15-4
Optimizations for MATLAB Function blocks and black boxes
.. 15-4

xxiv Contents

Generate Xilinx System Generator Black Box block from
MATLAB 15-4

Save and restore HDL-related model parameters 15-4

Command-line interface for MATLAB-to-HDL code generation

.. 15-4
User-specifiable clock enable toggle rate in test bench 15-5
RAM mapping for dsp.Delay System object 15-5
Code generation for Repeat block with multiple clocks 15-5
Automatic verification with cosimulation using HDL Coder

.. 15-5
ML605 Board Added To Turnkey Workflow 15-5

R2012a
Product Name Change and Extended Capability 16-2
Code Generation from MATLAB 16-2
Code Generation from Any Level of Subsystem Hierarchy ... 16-3
Automated Subsystem Hierarchy Flattening 16-3
Support for Discrete Transfer Fcn Block 16-3
User Option to Constrain Registers on Output Ports 16-3
Distributed Pipelining for Sum of Elements, Product of
Elements, and MinMaxBlocks 16-4

xxvi

Contents

.. 16-4
Streaming for MATLAB Loops and Vector Operations 16-4
Loop Unrolling for MATLAB Loops and Vector Operations ... 16-4

Automated Code Generation from Xilinx System Generator for

DSPBIOCKS 16-4
Altera Quartus II 11.0 Support in HDL Workflow Advisor . . . 16-5
Automated Mapping to Xilinx and Altera Floating Point

Libraries 16-5
Vector Data Type for PCI Interface Data Transfers Between xPC

Targetand FPGA 16-5
New Global Property to Select RAM Architecture 16-5
Turnkey Workflow for AlteraBoards 16-6
HDL Support For Bus Creator and Bus Selector Blocks 16-6
HDL Support For HDL CRC Generator Block 16-6
HDL Support for Programmable Filter Coefficients 16-6

Notes 16-7

Synchronous Multiclock Code Generation for CIC Decimators

and Interpolators 16-7
Filter Block Resource Report Participation 16-8

HDL Block Properties Interface Allows Choice of Filter
Architecture 16-9

HDL Support for FIR Filters With Serial Architectures and
ComplexInputs 16-11

HDL Support for External Reset Added for Proportional-
Integral-Derivative (PID) and Discrete Time Integrator (DTI)
Blocks 16-11

R2019a

Version: 3.14
New Features

Bug Fixes

R2019a

Model and Architecture Design

1-2

Protected Model Code Generation: Share protected Simulink
models with the option to allow HDL code generation

To share a model with a third-party vendor while hiding your model's intellectual
property, protect the model. In R2019a, you can create a protected model that supports
HDL code generation. The model that you want to protect must be a referenced model. In
the parent model:

1 Right-click the model reference block that you want to protect and select Subsystem
and Model Reference > Create Protected Model for Selected Model Block.

2 Enable HDL code generation support for the protected model by selecting Use
generated HDL code in the Create Protected Model dialog box. You can enable
password protection, which protects the model contents by using AES-256
encryption.

You can generate HDL code for models that contain protected model references created
for HDL code generation. Before you generate HDL code, you must authorize the
protected model references that are password-protected. For authorization, right-click the
protected model reference blocks and select Authorize.

To learn more, see “Model Protection”.

Double-precision floating-point support for HDL code
generation from Simscape models

You can now generate an HDL implementation model with double data types when you
run the Simscape HDL Workflow Advisor for your original Simscape™ model. To generate
the implementation model with double data types, in the Generate implementation
model task, specify double as the Floating-point precision.

Previously, you could generate an implementation model with single data types. In
R2019a, single is the default data type. It is recommended that you use single data
types, and then simulate the generated implementation model to see if your design meets
the numerical accuracy requirements. If your design does not meet the requirements, use
double as the Floating-point precision.

Model and Architecture Design

See also “Simscape HDL Workflow Advisor Tasks” and “Validate HDL Implementation
Model to Simscape Algorithm”.

Validation logic verification for functional equivalence of HDL
implementation model with Simscape model

In R2019a, you can specify insertion of a validation logic subsystem in the HDL
implementation model when you run the Simscape HDL Workflow Advisor. By using the
validation logic, you can verify the functional equivalence of the generated HDL
implementation model with the original Simscape algorithm.

To insert this logic, in the Generate implementation model task, select the Generate
validation logic for the implementation model check box. When you run this task and
open the HDL implementation model, you see a Validation Subsystem block that
compares the output of the Simscape algorithm with the HDL implementation.

If the HDL implementation model does not meet the numerical accuracy requirements of
your design, you can increase the Validation logic tolerance or change the Floating-
point precision to double. To learn more, see “Validate HDL Implementation Model to
Simscape Algorithm”.

Simscape to HDL Workflow Reference Applications

Simscape to HDL workflow provides two examples:

* Replacing variable resistors illustrates how a nonlinear model that consists of variable
resistors can be replaced by using an equivalent switched linear model for
compatibility with Simscape to HDL workflow and generation of HDL implementation
model.

* Simscape Hardware-in-the-Loop (HIL) on Speedgoat FPGA I/O Modules illustrates how
you can target your Simscape algorithm onto Speedgoat FPGA I/0O modules and
perform Hardware-in-the-Loop (HIL) simulation.

Enhancements to single-precision native floating-point
operators support

ULP Accuracy and DSP Usage Improvements

ULP of these native floating-point operators with single data types have improved:

1-3

R2019a

1-4

Operator Before R2019a In R2019a
log 3 1
asinh 3 2
atanh 4 3

In addition, the maximum latency value of the log operator increased from 20 to 27. The
minimum latency of the operator is unchanged.

See also “ULP of Native Floating-Point Operators”.
Improvements to Rounding Function
For the Rounding Function block, in R2019a, native floating-point in HDL Coder has:

* Support for custom latency.
+ Improvements to area usage and target frequency.

Additional block support with double-precision native
floating-point code generation

HDL Coder now supports code generation for these blocks that have double data types in
the Native Floating Point mode.

* Sqrt and Reciprocal Sqrt

* Rounding Function

» Data Type Conversion for conversions between double type and fixed-point data types
* MinMax

* Dot Product

* Sum of Elements and Product of Elements

* Lookup tables including Direct Lookup Table (n-D) and n-D Lookup Table

* Single Port RAM, Simple Dual Port RAM, Dual Port RAM, and Dual Rate Dual Port
RAM

 HDL FIFO
* Discrete-Time Integrator

To see all blocks that HDL Coder supports with double-precision data types, see “Simulink
Blocks Supported with Native Floating-Point”.

Model and Architecture Design

Additional Verilog constructs supported with HDL import

HDL import now has support for more synthesizable Verilog® constructs that you can use
when importing your HDL file to generate the corresponding Simulink® model. You can
now use:

» Implicit data type conversion such as in arithmetic operations, data type conversion,
bit selection, and concatenation.

* Constructs that infer RAM blocks in your Simulink model. The blocks that are inferred
include Single Port RAM, Dual Port RAM, and the System-Object based RAM blocks,
Single Port RAM System and Dual Port RAM System.

* Constructs that infer Compare To Constant and Gain blocks in your model.

+ forloop and loop generate constructs such as for-generate, if-generate, and case-
generate constructs.

* casex and casez statements.

To learn more about the supported constructs, see “Supported Verilog Constructs for HDL
Import”.

For examples, see importhdl.

HDL Coder contextual tab in Simulink Toolstrip tech preview

In R2019a, you have the option to turn on the Simulink Toolstrip. See “Simulink Toolstrip
Tech Preview replaces menus and toolbars in the Simulink Desktop” (Simulink) in the
Simulink release notes for more details.

The Simulink Toolstrip includes contextual tabs that appear only when you need them.
The HDL Coder contextual tabs include options for completing actions that apply only to
HDL Coder.

* To access the HDL Code tab, open the HDL Coder app from the Apps tab within the
Simulink Toolstrip.

» To access options in the HDL Code tab such as to display the HDL Block Properties
for a block or a Subsystem in your model, select that block or Subsystem. The options
change contextually depending on what you select in the model.

Documentation does not reflect addition of the HDL Coder contextual tabs.

1-5

R2019a

1-6

HDL Coder Modeling Guidelines in Documentation

In R2019a, the HDL Coder documentation contains a list of modeling guidelines. These
guidelines are general recommendations for creating Simulink models, MATLAB Function
blocks, and Stateflow® charts for code generation with HDL Coder.

The guidelines are divided into three sections:

* “Model Design and Compatibility Guidelines”: Consists of guidelines for usage of basic
blocks, clock and reset signals, buses and vectors, and how to model your design
hierarchically.

* “Guidelines for Supported Blocks and Data Type Settings”: Consists of guidelines for
using various blocks in the HDL Coder block library and about the support data types.

* “Guidelines for Speed and Area Optimizations”: Consists of guidelines for optimizing
your design for speed or area for deployment on to the target hardware.

For more information, see “HDL Modeling Guidelines”.

Block Enhancements

Block Enhancements

Streaming Matrix Multiply and Streaming Matrix Inverse
Reference Applications

HDL Coder provides two examples that illustrates how you can perform streaming matrix
inverse and streaming matrix multiplication for code generation.

* HDL Code Generation for Streaming Matrix Multiply System Object

* HDL Code Generation for Streaming Matrix Inverse System Object

Partition Offset parameter support in For Each Subsystem
block

You can now generate HDL code for models that contain For Each Subsystem blocks with
a nonzero value specified for the Partition Offset parameter of the For Each block.

See also For Each and “Generate HDL Code for Blocks Inside For Each Subsystem”.

Enhancements to Assignment and Selector blocks
Enhancements to Assignment block

In R2019a, HDL Coder supports all indexing modes of the Assignment block for 1-D
vectors and 2-D matrices. With 1-D vectors, you can also use array of buses for all
indexing modes of the block. To learn more about modeling with array of buses, see
“Generating HDL Code for Subsystems with Array of Buses”.

Previously, the code generator supported Index vector (port) asthe Index Option
mode for 1-D vectors and assignment to a scalar element for 2-D matrices. The supported
modes for 1-D vectors now include:

* Assign All

* Index vector (dialog)

* Index vector (port)

* Starting index (dialog)

* Starting index (port)

1-7

R2019a

1-8

For 2-D matrices, you can now index both dimensions by using any combination of these
indexing modes. To learn more about the indexing modes of the block and how to use
them, see Assignment.

Enhancements to Selector block

HDL Coder now supports all indexing modes of the Selector block for 1-D vectors and 2-D
matrices.

Previously, the code generator supported all Index Option modes for 1-D vectors and
indexing of scalar elements for 2-D matrices. In R2019a, you can use any indexing mode
for 1-D vectors and use any combination of these indexing modes to index both
dimensions of a 2-D matrix:

* Select All

* Index vector (dialog)

* Index vector (port)

* Starting index (dialog)

* Starting index (port)

To learn more about the indexing modes of the block and how to use them, see Selector.

Enhancements to Discrete FIR Filter HDL Optimized block and
frame-based Discrete FIR Filter block

Enhancements to Discrete FIR Filter HDL Optimized Block

The Discrete FIR Filter HDL Optimized block now provides the option to use
programmable coefficients with a fully parallel systolic architecture. When you use a
partly serial systolic architect, the block now optimizes symmetric and antisymmetric
coefficients and provides an optional reset port. To use this block, you must have DSP
System Toolbox™ installed.

These features are also available with the dsp.HDLFIRFilter System object™.

HDL code generation support for programmable coefficients with frame-based
Discrete FIR Filter block

The Discrete FIR Filter block now supports specifying coefficients from an input port
when you use frame-based input. To use this feature, you must have DSP System Toolbox.

Block Enhancements

LTE Reference Applications: Transmitter example and TDD
support for SIB recovery

LTE HDL Toolbox™ provides two examples:

* The “LTE HDL PBCH Transmitter” (LTE HDL Toolbox) reference application generates
the baseband waveform specified by LTE standard TS 36.211. The waveform includes
the primary synchronization signal (PSS), secondary synchronization signal (SSS), cell-
specific reference signals (Cell-RS), and the master information block (MIB) for
transmission through the Physical Broadcast Channel (PBCH).

* The “LTE HDL SIB1 Recovery” (LTE HDL Toolbox) reference application now shows
how to decode SIB1 data for LTE networks that use either TDD or FDD.

Both designs support HDL code generation with HDL Coder and are ready for deployment
to hardware.

OFDM Modulator block and LTE and 5G Symbol Modulator
blocks

The OFDM Modulator block implements an algorithm for modulating LTE signals
specified by LTE standard TS 36.212. The block modulates an encoded resource grid into
time-domain OFDM samples.

The LTE Symbol Modulator block and the NR Symbol Modulator block map groups of bits
to complex data symbols according to a dynamic modulation scheme. These supported
modulation schemes are specified by LTE standard TS 36.211 and 3GPP 5G standard TS
38.211.

¢ LTE Symbol Modulator: BPSK,QPSK,16/64/256-QAM
* NR Symbol Modulator: pi/2-BPSK, BPSK,QPSK,16/64/256-QAM

To use these blocks, you must have LTE HDL Toolbox installed. Each of these three blocks
provides an interface and architecture for HDL code generation and hardware
deployment.

1-9

R2019a

Increased kernel size limits for Image Filter block
The Image Filter block now allows for a coefficient kernel with up to 64-by-64 elements.

Previously, the block restricted the coefficient kernel size to 16-by-16 elements. You can
use this block if you have Vision HDL Toolbox™ installed.

1-10

Code Generation and Verification

Code Generation and Verification

Customization of constant name in VHDL code generated for

Lookup Table data

Previously, when you generated VHDL code for models that contain lookup tables, the
CONSTANT name for the lookup table data was assigned as nc in the generated code,

irrespective of the lookup table name.

In R2019a, the generated code uses the name of the Lookup table block followed by the
postfix data for the CONSTANT name in the generated code, based on the name of the
Lookup table block in your Simulink model. This naming customization makes it easier to
trace between the model and the generated code.

For example, consider this model that contains a Lookup Table with the name TBL_SIN.

int8 2-D T(u)
{1} 1N
int8
(2} P u2 _rrijn
TBL_SIN

The generated code for the lookup table data

intd lIIIII

is as shown in table:

Before R2019a

In R2019a

- Constants
CONSTANT nc : vector of signed8(0 Td
(to _signed(16#04#, 8), to signed(]
to signed(16#05#, 8), to signed(16#13#,

- Constants
CONSIANT TBL SIN table data :
kﬂ_ ned 16#04# 8)
@8* 6#05# 8), to signed(16#13#, 8)):
-- sf1x8 [4T

vector of signe

H8 (0 TO 3) :
to signed(16#10#, 8)}

I sfix8 [4]

1-11

R2019a

Optimized counters in generated HDL code for Stateflow

temporal logic

Temporal logic operators produce integer or fixed-point type counters in the generated
HDL code. Previously, the counter data type in the generated code was returned as
uint8, uintl6, or uint32, irrespective of the size of the fixed-point type.

In R2019a, the counters in the generated HDL code are optimized based on the operator
and the type of threshold. For example, consider this Stateflow chart in your Simulink
model. The variable x uses the data type fixdt(0,5,0).

A
[iransitiontakenat =0;

1-12

B

] after(x, tick) /{ tfransitiontakenat = 1;} [du: transitiontakenat = 0;

The generated Verilog code for the chart is as shown in the table. The fixed-point type is
optimized to ufix5 instead of returning as uint8.

Before R2019a

In R2019a

module Chart (clk,

reg 1is Chart;

reg [7:0] t O;

x, transitiontakenat);

reg [31:0] transitiontakenat 1; //
reg [7:0] temporalCounter il; // ui
reg 1is Chart next; // enum type ifg
reg [7:0] temporalCounter il next;
reg [7:0] temporalCounter il temp;

reset, enb,

// uint8

// ufix8

module Chart (clk, reset, enb,
x, transitiontakenat);

reg is Chart; // uint8
uimed2 [31:0] transitiontakenat 1; //
nt8eg [4:0] temporalCounter il; // uf
_Chragt (2 €hamg) next; // enum type ig
//regnf&:0] temporalCounter il next;
//regnfg:0] temporalCounter il temp;

uint32
ix5
_Chart (2
// ufix5
// ufix5

Code Generation and Verification

HDL Coder Workflow: Enhanced options for model generation

In R2019a, HDL Coder provides options for model generation in the HDL Code
Generation pane for better usability and performance. In the Model Generation tab,
you can select the types of the models that you want to generate. You can customize the
name of the generated model and the validation model by using Naming options. To
control the layout of the generated models, use the Layout options. For more
information, see “Model Generation for HDL Code”.

HDL Code Generation: Diagnostics tab renamed to Advanced

Before R2019a, Code generation output option was available when you selected HDL
Code Generation in the left pane.

&4 Configuration Parameters: untitled/Configuration (Active) - O *
Solver Set Basic Options

Data Import/Export
Math and Data Types
» Diagnostics Language: VHDL -
Hardware Implementation
Model Referencing
Simulation Target

Generate HDL for: |untitled -

Folder: hdlsrc Browse...

Code generation output
» Code Generation

» Coverage +| Generate HDL code

» HDL Code Generation Generate validation model

Restore Model Defaults Run Compatibility Checker

Generate

OK Cancel Help Apply

1-13

R2019a

Starting in R2019a, the Code generation output option is available under the
Advanced tab when you select HDL Code Generation > Global Settings in the right

pane.

In releases before R2019a, the Global Settings pane had a Diagnostics tab. This tab
has now been replaced by the Advanced tab, which contains the parameters listed under
the Diagnostics section.

Q

Solver

Data Import/Export

Math and Data Types
Diagnostics

Hardware Implementation

-

Model Referencing
Simulation Target
» Code Generation
» Coverage
¥ HDL Code Generation
Target
Optimization
Floating Point
Global Settings
Report
Test Bench
EDA Tool Scripts

& Configuration Parameters: untitled/Configuration (Active)

- O X
Clock settings
Reset type: Asynchronous ~ | Reset asserted level: Active-high | -
Clock input port: clk Clock enable input port: |clk_enable
Reset input port: reset Clock inputs: Single | -
Oversampling factor: |1 Clock edge: Rising | -
Additional settings
General Ports Coding style Coding standards Model Generation| Advanced
Diagnostics
Highlight feedback loops inhibiting delay balancing and optimizations
Highlight blocks inhibiting clock-rate pipelining
Highlight blocks inhibiting distributed pipelining
Check for name conflicts in black box interfaces: |Warning | -
Check for presence of reals in generated HDL code: |Error | -
Code generation options
Generate HDL code
OK Cancel Help Apply

For more information, see “Diagnostics for Optimizations”, “Diagnostics for Reals and
Black Box Interfaces”, and “Code Generation Output”.

1-14

Speed and Area Optimizations

Speed and Area Optimizations

Improvements to element-wise matrix transformation

Previously, when you performed element-wise matrix operations with blocks such as Add
or Product, the code generator expanded the matrix operation to multiple equivalent
scalar operations. The scalar operations extracted each element, performed the
computation, and then combined the scalar elements to output the matrix result. This
transformation made the generated model appear complex, especially for large matrices.

In R2019a, when you perform element-wise matrix operations, the code generator
transforms the element-wise matrix operations in the generated model to column vectors
instead of expanding it to multiple scalar operations. This transformation enables you to
more effectively use optimizations such as streaming when performing matrix operations
in your design.

Optimization of unconnected port for removing redundant
logic in design

You can remove redundant logic in your design by deleting the unconnected ports. The
optimization for unconnected ports removes all unconnected input and output ports from
the generated code. It does not remove ports from the top-level DUT models or
subsystems.

The optimization includes removing unconnected vector and scalar ports, bus element
ports, and bus ports. Removing unconnected ports improves the readability of the
generated VHDL or Verilog code and reduces code size and area usage.

For more information, see “Remove Redundant Logic in Design”.

1-15

R2019a

IP Core Generation and Hardware Deployment

1-16

DUT AXI4 slave interface connection to multiple AXI Master
interfaces in reference designs

In R2019a, HDL Coder enables you to connect AXI4 slave interfaces in the DUT HDL IP
core to multiple AXI Master interfaces in the custom reference design.

Previously, when you used the addAXI4SlaveInterface method, you could specify only
one AXI Master interface connection to the DUT AXI4 slave IP core. In R2019a, you can
define multiple AXI Master interfaces which enables you to simultaneously connect your
HDL DUT IP core to two or more AXI Master IP in the reference design, such as the JTAG
AXI Master IP and the ARM® processor in the Zynq® Processing System.

To learn how you can specify multiple AXI Master interfaces in reference designs, see
“Define Multiple AXI Master Interfaces in Reference Designs to access DUT AXI4 Slave
Interface”.

Default system with External DDR4 Memory Access reference
design

You can use a new Default system with External DDR4 Memory Access
reference design when you specify Xilinx Zynq UltraScale+ MPSoC ZCU102
evaluation kit as the target platform.

You must have HDL Verifier™ and the HDL Coder Support Package for Xilinx® Zynq
Platform.

Generation of HDL IP core without AXI4 slave interfaces

In R2019a, when you run the Generic IP Core Generation workflow, you can generate an
HDL IP core without any AXI4 slave interfaces. Use this capability if you do not want to
generate an AXI4 slave interface to tune the IP core parameters.

To run this workflow, open the HDL Workflow Advisor, specify Generic Xilinx
Platformor Generic Altera Platform as the target platform, and make sure that
you map the DUT ports to only External 10, Internal IO, or AXI4-Stream interface with
TLAST mapping. In addition, when you generate the HDL IP core, in the Generate RTL

IP Core Generation and Hardware Deployment

Code and IP Core task, clear the Generate default AXI4 slave interface check
box, and then select Run This Task.For more information, see “Custom IP Core
Generation” and “Generate Board-Independent HDL IP Core from Simulink Model”.

You can also create a custom reference design without an AX14 slave interface that you
can use to target standalone FPGA bhoards. In the reference design definition file
plugin_ rd.m, remove any mention of the addAXI4SlaveInterface method. For
examples, see:

“n

“n
L]

Improved synchronization of global reset signal to IP core
clock domain

In R2019a, when you run the IP Core Generation workflow, the code generator
automatically inserts a piece of logic that synchronizes the global reset signal to the IP
core clock domain. The addition of this synchronization logic prevents metastability in
flipflops that can occur when the reset signal changes within the setup or hold edge of the
clock.

The synchronization logic works differently depending on whether you specify the Reset
type as Synchronous or Asynchronous on the model.

* Asynchronous reset: The logic asserts the reset signal asynchronously and de-asserts
the reset signal synchronously.
* Synchronous reset: The logic asserts and de-asserts the reset signal synchronously.

For more information, see “Synchronization of Global Reset Signal to IP Core Clock
Domain”.

Minimization of clock enable signals in IP Core Generation
workflow

When you run the IP Core Generation workflow, in the Set Advanced Options task
of the HDL Workflow Advisor, on the Ports tab, if you select the Minimize clock enables
check box, you can now minimize or remove clock enable signals in the generated HDL IP
core.

To use this capability, you must:

1-17

R2019a

» Specify Free running as the Processor/FPGA synchronization mode.

* Assign one of the DUT ports to the Ready port when mapping to AXI4-Stream Master
or AXI4-Stream Video Master interfaces.

Updates to supported software
HDL Coder has been tested with Xilinx Vivado® Design Suite 2018.2.

See “Supported Third-Party Tools and Hardware”.

1-18

R2018b

Version: 3.13
New Features
Bug Fixes

Compatibility Considerations

R2018b

Model and Architecture Design

2-2

Hardware Acceleration of Plant Models: Generate HDL code
from Simscape Electrical switched linear models

In R2018b, you can generate HDL code for your plant model that you developed by using
Simscape blocks, and then deploy the generated code to a target FPGA device. Previously,
before you could generate HDL code, you had to convert the Simscape model to an
equivalent Simulink model.

By deploying the plant model to an FPGA, you can:
* Simulate the HDL implementation in real time with smaller time steps and increased

accuracy by using hardware-in-the-loop (HIL) simulations.

* Model complex physical systems that previously took a long time to model by using
Simulink blocks.

» Use the reconfigurability and parallelism capabilities of the FPGA for improved area
and timing.

For more information, see Simscape .

Verilog Import: Import synthesizable Verilog code and
generate Simulink model

In R2018b, by using the importhdl function, you can import your HDL file that contains
synthesizable Verilog code and generate the corresponding Simulink model. The
generated Simulink model is an exact representation of the HDL code in terms of
functionality and behavior. The imported model uses basic Simulink blocks instead of a
black box representation.

By importing the code in Simulink, you can

* Verify the simulation behavior of the handwritten Verilog code in a model-based
simulation environment.

* Optimize your design in Simulink and further improve area and timing on the target
FPGA device by using the speed and area optimizations in HDL Coder.

To learn more, see Verilog HDL Import: Import Verilog Code and Generate Simulink
Model.

https://www.mathworks.com/help/releases/R2018b/hdlcoder/simscape.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/importhdl.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-import-import-hdl-code-and-generate-simulink-model.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-import-import-hdl-code-and-generate-simulink-model.html

Model and Architecture Design

Double-Precision Native Floating Point: Generate target-
independent synthesizable RTL from double-precision
floating-point models

In R2018D, if you have double-precision data types in your Simulink model, you can use
HDL Coder native floating-point support to generate target-independent HDL code
without converting to fixed point or single-precision data types. You can deploy the
generated code on any generic ASIC or FPGA platform.

To see the blocks that HDL Coder supports with double-precision data types, see Simulink
Blocks Supported with Native Floating-Point.

Custom latency specification for native floating-point
operators

In R2018D, if you use floating-point data types as input to certain blocks in your model,
you can specify a custom latency by using the HDL Coder native floating-point support.
By using custom latency, you can use more latency choices other than from Zero, Min,
and Max, which gives you better speed control. To learn about the blocks that support the
custom latency setting and how to specify a custom latency, see NFPCustomLatency.

By specifying a custom latency, you can customize your design to achieve a balance
between:

* Clock frequency and power consumption: A higher latency value increases the
maximum clock frequency (Fmax), which increases the dynamic power consumption.

* Oversampling factor and sampling frequency: A combination of higher latency value
and higher oversampling factor increases the Fmax but reduces the sampling
frequency.

See also Latency of Floating Point Operators.

Enhancements to supported blocks and complex data types
with single-precision native floating-point

Block Support

HDL Coder now supports the Sqrt block with Function set to signedSqrt in the native
floating-point mode.

2-3

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_e29db696-7117-431a-a8b8-4471b8d24ea8
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/sqrt.html

R2018b

2-4

Complex Data Type Support

HDL Coder now supports complex types with these blocks in the native floating-point
mode.

* Unary Minus

* Sign

* Math Function with Function set to conj, transpose, or hermitian

* Data Type Conversion

* Rounding Function with Function set to floor, ceil, round, or fix

See also Simulink Blocks Supported with Native Floating-Point.

Enhancements to output delay absorption for complex
multipliers with single-precision native floating-point

In R2018b, if your design uses single data types and contains complex Gain blocks that
take a complex input or have a complex Gain parameter, or your design contains complex
Product blocks, HDL Coder absorbs the delays at the output of the blocks. To use this
delay absorption, before you generate HDL code, enable the Native Floating Point
mode.

Previously, for the Gain block, HDL Coder absorbed delays when both input and the Gain
parameter were scalars. Now, for the Gain block, HDL Coder absorbs delays in any of
these cases:

* Scalar input with scalar Gain parameter

* Complex input with scalar Gain parameter

* Scalar input with complex Gain parameter

* Complex input with complex Gain parameter

For example, this figure shows a model that uses single data types and inputs a complex
value to a Gain block that has a scalar Gain parameter and an output delay of three.

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/unaryminus.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/sign.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/roundingfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html

Model and Architecture Design

349 single {c) single {c)

v

HDL_DUT

single (c)

A J
]
w
O

single {c) single ()
H 3 =
in1

Delay

This table displays the generated model when you generate code for the HDL_DUT
Subsystem. In R2018b, you see that HDL Coder absorbs the delays as part of the floating-

point product operators, NFP_mul. To learn more, see Latency Considerations with
Native Floating Point.

2-5

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/latency-considerations-with-native-floating-point.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/latency-considerations-with-native-floating-point.html

R2018b

Gain_const

single

aCa

single

aCa

Ga

in_const1

5 & (o
(@ =

ini

single

fﬂe
g single

Gain_CZRelm

Gain

single

single

ingle
Cr—>

Gain1

single (o) _{‘H‘e -
-

ini

c. singla
Gain_const
-C- o Gain ol Re ;
™_|sing
Gain_const1 im0
single Gain_Relm2Comg
singla
Gain1
Gain_C2Rel \
single
] dingle -
u single bd P
Gain1 Gain1_p

Block Enhancements

Block Enhancements

Enhancements to matrix support for HDL code generation

In R2018b, HDL Coder extends the block support to more blocks that can perform
element-wise operations. Other blocks that are supported with matrix types include:
* Assignment

* From

* Goto

* MATLAB Function

To learn about blocks that are supported with matrix types, see Signal and Data Type
Support.

HDL code generation support for Probe block and blocks that
detect change in input signal value

In R2018b, HDL Coder supports code generation for these blocks:
* Probe - probes selected attributes of the input signal such as width, dimensionality,
sample time and offset, and whether the signal is complex-valued.

* Detect Change - detects whether there is a change in value of an input signal from the
previous value.

* Detect Decrease - detects whether there is a decrease in value of an input signal from
the previous value.

* Detect Increase - detects whether there is an increase in value of an input signal from
the previous value.

HDL code generation support for Foreach Subsystem with
Minimize global resets setting

In R2018b, HDL Coder supports code generation for a design that uses a For Each
Subsystem and has the Minimize global resets setting enabled. To learn more about
this setting, see Minimize Clock Enables and Reset Signals.

2-7

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/assignment.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/from.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/goto.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/matlabfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/probe.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectchange.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectdecrease.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectincrease.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/minimize-clock-enables-and-reset-signals.html

R2018b

2-8

HDL Coder support for virtual bus containing nonvirtual
subbus

In your design, you can now model virtual buses containing nonvirtual buses or an array
of buses, and then generate HDL code for the design.

Array of buses

BC3 Nonvirtual buses

Viterbi Decoder and Depuncturer Block: Decode bitstreams by
using the Viterbi algorithm with puncturing, terminated, and
truncated modes (requires LTE HDL Toolbox)

The Viterbi Decoder block supports continuous, terminated, and truncated modes by
using hardware-friendly control signals. The block supports punctured code rates and

provides an erasure port. The Depuncturer block accepts a puncture vector as either a
port or a property and provides an erasure output signal.

Both blocks support HDL code generation.

https://www.mathworks.com/help/releases/R2018b/ltehdl/ref/viterbidecoder.html
https://www.mathworks.com/help/releases/R2018b/ltehdl/ref/depuncturer.html

Block Enhancements

HDL code generation support for complex input signals or
complex coefficients of frame-based Discrete FIR Filter and
FIR Decimation blocks (requires DSP System Toolbox)

You can generate HDL code from a frame-based filter that uses either complex input
signals and real coefficients or complex coefficients and real input signals. See the
"Frame-Based Input Support" sections of Discrete FIR Filter and FIR Decimation.

Discrete FIR Filter HDL Optimized: Select transposed
architecture, optimize symmetric and antisymmetric
coefficients, and enable reset port (requires DSP System
Toolbox)

The Discrete FIR Filter HDL Optimized block now provides:

* An option to use a direct form transposed architecture.

* Optimization of symmetric and antisymmetric coefficients when you select Direct
form systolic (without Share DSP resources enabled) or select Direct form
transposed. This optimization reduces the number of multipliers and makes efficient
use of FPGA DSP resources.

* Optional Reset input port.

These features are also available on the dsp.HDLFIRFilter System object.

Compatibility Considerations

Starting in R2018b:
* The validIn port is mandatory. The Enable valid input port parameter is no longer
available.

* The ready port is always enabled when you select Share DSP resources and disabled
when you clear Share DSP resources. The Enable ready output port parameter is
no longer available.

2-9

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.hdlfirfilter-system-object.html

R2018b

Code Generation and Verification

2-10

Test Point Integration with FPGA Data Capture: Use FPGA data
capture to specify signals to be captured during FPGA testing
by using Test Points in Simulink

You can now use FPGA Data Capture in an HDL Coder workflow. Configure the HDL
Workflow Advisor to enable DUT output port generation for test point signals, and then
analyze them in MATLAB® or Simulink (Requires an HDL Verifier license).

For more information, see FPGA Data Capture.

User-Interface Improvements to HDL Workflow Advisor and
HDL Code Generation Pane in Configuration Parameters
Dialog Box

HDL Code Generation Pane in Configuration Parameters Dialog Box

The HDL Code Generation pane is now reorganized and has new subpanes. The new
panes includes subpanes for specifying target device settings, speed and area
optimizations, reporting parameters, and so on. Before generating code, you can use this
organization to more easily navigate to the parameters of interest and apply them to your
model.

This figure shows the new panes added to the HDL Code Generation pane.

https://www.mathworks.com/help/releases/R2018b/hdlcoder/fpga-data-capture.html

Code Generation and Verification

@ Configuration Parameters: sfir_fixed/Configuration (Active) - Od *
|Q Search
Solver Set Basic Options

Data Import/Export
Math and Data Types
b Diagnostics Language: |VHDL | - |
Hardware Implementation
Maodel Referencing
Simulation Target
» Code Generation
» Coverage Generate HDL code
¥ HDL Code Generation [] Generate validation model
Target
Optimization | Restore Model Defaults | Run Compatibility Checker |
Floating Point
Global Settings
Report
Test Bench
EDA Tool Scripts

Generate HDL for: |sfir_fixed/symmetric_fir |~

Folder: |hc||src | | Browse...

Code generation output

| OK || Cancel || Help || Apply |

This table lists the changes to the HDL Code Generation pane.

Target frequency and Tool and Device section of |The parameters moved to a
synthesis tool and device the HDL Code Generation [new HDL Code Generation
parameters > Target and > Target pane.

Optimization pane.

2-11

R2018b

2-12

HDL code generation
parameters in
Configuration Parameters
Dialog Box

Before R2018b

In R2018b

Multicycle path constraints
and optimization
parameters

Optimization and
Multicycle Path
Constraints sections of the
HDL Code Generation >
Target and Optimization
pane.

The parameters moved to a
new HDL Code Generation
> Optimization pane.

Native floating-point and
target floating-point
mapping parameters

Floating Point Target tab
of the HDL Code
Generation > Global
Settings pane.

The parameters moved to a
new HDL Code Generation
> Floating Point.

Code Generation Report
parameters

Code Generation Report
section of the HDL Code
Generation pane.

The parameters moved to a
new HDL Code Generation
> Report pane.

HDL Workflow Advisor

The HDL Workflow Advisor has a new Set Report Options task. The new task appears
after the Set Basic Options task. Use this task to specify the Code Generation Report
parameters that were previously in the Set Basic Options task.

Code Generation and Verification

() HDL Workflow Advisor - comparator/comparator — O e

File Edit Run Help

o —

1.1. Set Target Device and Synthesis Tool
v [} HDL Workflow Advisor

v (G 1. set Target
o ~1.1. Set Target Device and Synthesis Td Set Target Device and Synthesis Tool for HDL code generation
@ 1.2 Set Target Frequency Input Parameters

hd [E 2. Prepare Model For HOL Code Generation
@ 2.1 Check Global Settings
o #2.2. Check Algebraic Loops Target platform: W Launch Board Manager
0 2.3, Check Block Compatibility

@ ~2.4. Check Sample Times Synthesis tool: |I'~‘Iicmsemi Libero SoC b4 | Tool version: | 11.8

~ [Eg 3. HDL Code Generation

Analysis (~Triggers Update Diagram) ~

Target workflow: | Generic ASIC/FPGA d

Family: |RTG4 v | Device: |RT4G150 -
hd @ 3.1. Set Code Generation Options
@ 3.1.1. Set Basic Options . Package: | 1657 CG ~ | Speed: |sTD -
@ 3.1.2. Set Report Options
@ 3.1.3. Set Advanced Options Project folder: | hdl_prj | | erowse.. |

@ 3.1.4. Set Optimization Options

@ 3.1.5. Set Testbench Options Run This Task

o #3.2. Generate RTL Code and Testbench

~ [4. FPGA Synthesis and Analysis Resut: @ Passed
4.1. Create Project
v [@ 4.2, Perform Synthesis and P/R Passed Set Target Device and Synthesis Tool.

Q 4.2.1. Run Synthesis
0 4.2.2. Run Implementation

2-13

R2018b

Speed and Area Optimizations

2-14

Enhancements to optimization that removes redundant logic
in design

In R2018b, HDL Coder made enhancements to the optimization that removes redundant
logic in design, which further reduces code size and area usage.

For example, if you have an Enabled Subsystem that does not contain useful logic, the
optimization removes the Subsystem after HDL code generation. This optimization does
not generate HDL code for the Enabled Subsystem, which reduces the code size and
avoids potential synthesis failures with downstream tools when you deploy the generate
code onto a target platform. This optimization works with both fixed-point and floating-
point data types.

To learn about these enhancements, see the Removing Subsystems section in Dead
Code Elimination.

Streaming operation modes of Multiply-Accumulate block

You can now use a streaming mode of operation for the Multiply-Accumulate block.
Previously, the code generator supported the vector mode of operation. In R2018b, the
code generator supports this mode as the default and provides two streaming modes. To
specify when to start and stop the accumulation, and when the block output is valid, use
the streaming mode control signals.

To use the streaming modes, in the Block Parameters dialog box of the Multiply-
Accumulate block, for Operation Mode, specify either Streaming - using Start
and End portsorStreaming - using Number of Samples.

To learn more, see Multiply-Accumulate.

Different output latencies for designs with clock-rate
pipelining enabled at output ports

Previously, when you enabled the Allow clock-rate pipelining of DUT output ports

setting, the code generator used the same latency for sampling the DUT output ports.
When you used this optimization, and if you inserted clock-rate pipelines greater than the

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/_mw_1b33de2d-e14b-4f78-83b4-24bd8d2a892d.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/_mw_1b33de2d-e14b-4f78-83b4-24bd8d2a892d.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/multiplyaccumulate.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/multiplyaccumulate.html

Speed and Area Optimizations

Oversampling factor to any of the output ports, you incurred a simulation mismatch in
the validation model.

For example, consider this design that has an Oversampling factor of 10 and contains
two different subsystems with the ClockRatePipelining property set to off.

sfix18_En10 =fix18_Eni0
i) M i oot ot)

Subsystem1

sfix18_Eni0
b int Ot

Subsystemn2

Subsysteml contains a Subsystem that has a Gain block with the OutputPipeline
property set to 1 and ClockRatePipelining set to on. Subsystem2 contains a Subsystem
block that has a Gain block with the OutputPipeline property set to 12 and
ClockRatePipelining set to on.

sfix18_En10 sfix18_En10

Subsystem

sfix18_En10 sfix18_En10

Gain

2-15

R2018b

2-16

Previously, if you generated HDL code and the validation model for this design, and then
simulated the validation model, you observed a simulation mismatch. This mismatch
occurred because delay balancing adds a matching delay, which results in the Gain block
with OutputPipeline set to 12 using one additional latency.

—» In1 Out‘l| » 1)

L »Int out p 771

delayMatch

In R2018D, if you enable the Allow clock-rate pipelining of DUT output ports setting,
the clock-rate pipelining optimization uses different latencies for sampling the DUT
output ports. If you now generate HDL code and the validation model for the design
containing the Gain block, delay balancing does not insert additional matching delays,
which reduces the latency and avoids the simulation mismatch in the validation model.

——» I outt

L int outt

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

Xilinx Zynq UltraScale+ MPSoC Targeting: Select from
predefined targets and reference designs to generate code
for MPSoC devices

In R2018b, you can target Xilinx Zynq UltraScale+™ MPSoC devices, and use the IP
Core Generation workflow to:
Generate an HDL IP core for the MPSoC device.
Generate the software interface model for the HDL IP core.
Integrate the HDL IP core into the HDL Coder reference designs or create your own
custom reference design and target the Xilinx Zynq UltraScale+ MPSoC device.

For an example, see Getting Started with Hardware-Software Co-Design Workflow for
Xilinx Zynq UltraScale+ MPSoC Platform.

Multirate IP Core Generation: Target AXI4-Stream and AXI4
Master interfaces for designs with multiple sample rates

In R2018b, HDL Coder supports the IP Core Generation workflow for designs that
have multiple sample rates when you use any of these AXI4 interfaces:

* AXI4-Stream

* AXI4-Stream Video

* AXI4 Master

To use this workflow, ensure that the DUT ports that map to these AXI4 interfaces run at

the fastest rate of the design after HDL code generation. For examples of this workflow,
see Multirate IP Core Generation.

PCle MATLAB as AXI Master with External DDR4 Memory
Access reference design for Intel Arrial0 GX FPGA
Development kit

You can now specify Intel Arrial® GX FPGA Development kit as the target
platform and target a new PCIe MATLAB as AXI Master with External DDR4

2-17

https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/getting-started-with-hardware-software-codesign-workflow-for-zynq-ultrascale-mpsoc-devices.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/getting-started-with-hardware-software-codesign-workflow-for-zynq-ultrascale-mpsoc-devices.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/multirate-ip-core-generation.html

R2018b

Memory Access reference design by using the IP Core Generation workflow. To use
this reference design, you must have HDL Verifier installed.

The reference design consists of a PCle MATLAB AXI Master [P that you can use to access
the slave memory locations on board the FPGA from MATLAB. The PCle MATLAB AXI
Master IP connects to an Intel® PCle IP core. Using a PCle bus, you can send read and
write commands from the MATLAB command line to the Intel PCIe IP core, which then
communicates to the PCle MATLAB AXI Master IP. Therefore, you can use the PCle
MATLAB AXI Master IP in the reference design to transfer a large amount of data
between MATLAB and the FPGA through a high-speed PCI express interface.

When you target this reference design, the HDL DUT IP core can access the external
DDR4 memory by using the AXI4 Master interface. When you run the IP Core
Generation workflow, you can map the DUT ports to AXI4 Master interfaces. To learn
more, see Performing Large Matrix Operation on FPGA using External Memory.

PCle Bus
¥ M PCle Core

PCle MATLAB AXI Master

Interconnect

DDR4
HDL IP Core Memory
Controller

2-18

https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/performing-large-matrix-operation-on-fpga-using-external-memory.html

IP Core Generation and Hardware Deployment

Timing failure check in Build FPGA Bistream step of IP Core
Generation workflow

In R2018b, from your Simulink model, when you run the IP Core Generation
workflow, or the Simulink Real-Time FPGA I/0 workflow for boards that are based
on Xilinx Vivado, if the Vivado or Quartus® tool is unable to meet the design timing, HDL
Coder reports a timing failure in the Build FPGA Bitstream task. Previously, when you
ran the Build FPGA Bitstream task, the task ignored any timing failures and displayed
the results as Passed. To identify that there was a timing failure, you had to open the
project in Vivado or Quartus and navigate to the Project Summary information.

In the event of a timing failure, the Build FPGA Bitstream task:

* Reports a message Timing constraints NOT met!.
* Reports the worst negative slack.

* Replaces the previous bitstream with a new bitstream that has the same name and
uses a postfix timingfailure.bit or timingfailure.sof depending on
whether you created a project by using Vivado or Quartus.

* Provides a link to the timing_report.
* Provides a link to an Article on timing failures.

Support for read back of AXI4 write registers in IP Core
Generation workflow

In R2018b, from your Simulink model, when you run the IP Core Generation
workflow, or the Simulink Real-Time FPGA I/0 workflow for boards that are based
on Xilinx Vivado, you can read back the value that is written to the AXI4 slave write
registers. HDL Coder supports the read back capability for values of scalar and vector
data types that are written to the write registers by using AXI4 or AXI4-Lite interfaces.

To use this capability, in the Generate RTL Code and IP Core task, select the Enable
readback on AXI4 slave write registers check box, and then run this task. This setting
is saved on the DUT Subsystem for which you are generating the HDL IP core. To access
this setting, in the HDL Block Properties > Target Specification tab, select
AXI4RegisterReadback.

After you run the IP Core Generation workflow and program and connect to the
target device, you can read back the value that is written to the registers by using the

2-19

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/resolve-timing-failures-in-ip-core-generation-and-generic-asicfpga-workflows.html

R2018b

2-20

AXI4 Slave registers in the Linux console of the ARM processor. If you have HDL Verifier
installed, you can use the MATLAB as AXI Master IP to read back the values.

For more information, see Model Design for AXI4 Slave Interface Generation.

Microsemi Libero SoC Targeting: Synthesize and implement
generated code on Microsemi FPGAs by using HDL Workflow
Advisor

If you specify Microsemi Libero SoC as the Synthesis tool and Generic ASIC/FPGA
as the target workflow, you can now synthesize and implement the generated HDL code
on Microsemi® FPGA devices.

In R2018b, HDL Coder supports these family of devices:

* RTG4
* SmartFusion2
 IGLOO2

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/model-design-for-axi4-slave-interface-generation.html

IP Core Generation and Hardware Deployment

2 HDL Workflow Advisor - comparator/comparator

File Edit Run Help

o —

v [} HDL Workflow Advisor
h [i 1. Set Target
o ~1.1. Set Target Device and Synthesis Tol
O 1.2. Set Target Freguency
hd [i 2. Prepare Model For HOL Code Generation
@ 2.1 Check Global Settings
o #2.2. Check Algebraic Loops
O 2.3, Check Block Compatibility
o #2.4. Check Sample Times
h [i 3. HDL Code Generation
hd [i 3.1. Set Code Generation Options
@ 3.1.1. Set Basic Options
0 3.1.2. Set Report Options
o 3.1.3. Set Advanced Options
0 3.1.4. Set Optimization Options
o 3.1.5. Set Testbench Options
0 #3.2. Generate RTL Code and Testbench
W P‘_p 4. FPGA Synthesis and Analysis
0 4.1. Create Project
b P‘_p 4.2. Perform Synthesis and PR
0 4.2.1. Run Synthesis
o 4.2.2. Run Implementation

1.1. Set Target Device and Synthesis Tool
Analysis (~Triggers Update Diagram)
Set Target Device and Synthesis Tool for HDL code generation

Input Parameters

Target workflow: | Generic ASIC/FPGA

-

Target platform:

Synthesis tool: | Microsemi Libero SoC v
Family: | RTG# ¥ | Device: RT4G150
Package: | 1657 OG ¥ | Speed: STD

Launch Board Manager

Project folder: | hdl_prj

Run This Task

Result: 0 Passed

Passed Set Target Device and Synthesis Tool.

11.8 Refresh
-
-
Browse...
]
>
Help Apply

Before you specify Microsemi Libero SoC as the Synthesis tool, set up the tool path by
using the hdlsetuptoolpath function. Make sure that you have already installed

Microsemi Libero® SoC.

hdlsetuptoolpath('ToolName', 'Microsemi Libero SoC', 'ToolPath',...
"C:\Microsemi\Libero SoC v11.8\Designer\bin');

See also Tool Setup and Supported Third-Party Tools and Hardware.

Speedgoat 10 Modules 10321 and 10321-5 being replaced

HDL Coder no longer supports the Speedgoat I0 modules Speedgoat I0321 and its
variant Speedgoat I0321-5 that use the Xilinx Virtex®-4 FPGA with the Simulink
Real-Time FPGA I/0 workflow.

2-21

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/hdlsetuptoolpath.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/toolbox-setup.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html

R2018b

2-22

Compatibility Considerations

If you load a pre-R2018b model that was saved with the target platform Speedgoat
10321 or Speedgoat I0321-5, and then open the HDL Workflow Advisor, HDL Coder
generates a warning. To avoid this warning, when you run the Simulink Real-Time
FPGA I/0 workflow, use the Speedgoat I0331 or a later Speedgoat board.

See also Supported Third-Party Tools and Hardware and Xilinx HDL Support with
Speedgoat 10 Modules.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2017.4
* Intel Quartus Prime Standard Edition 17.1
* Microsemi Libero SoC 11.8

See Supported Third-Party Tools and Hardware.

https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html

R2018a

Version: 3.12
New Features

Compatibility Considerations

R2018a

Model and Architecture Design

HDL Model Checker integrated with Model Advisor

HDL Coder has now integrated the checks in the HDL Model Checker into the Simulink
Model Advisor. When you open the Model Advisor in Simulink, you see the checks in the
HDL Coder subfolder of the By Product folder.

£ Model Advisor - hdlcoder_led_blinking

File Edit Run Settings Highlighting

Help

¥ Model Advisor
v [] [C3 By Product
[&= simuiink
(] £ Simulink Coder
(] C3) Embedded Coder
[] £ simulink Code Inspector
(] C3 Simulink Check
[£ HDL Coder
D I3 Simscape
|:| IZ) Simulink Requirements
[] 5 simulink Design Verifier
[] 5 simulink Control Design
v (W] 3 By Task
E =31 Code Generation Efficiency
<

~

@r Upgrade Advisor

Code Generation Advisor

2)

N R —1

- O >

HDL Coder

Model Advisor (el

Analysis

Run Selected Checks

[] show report after run

Report

Report: Generate Report...| ...\report_302.html

Date/Time: Mot Applicable

Summary: 0 Pass: 0 o Fail: 0 @, Warning: 0 [=] Mot Run: 31

Tips

To process all enabled items in this folder and generate a new report, click "Run Selected
Checks™.

Right-click to select or deselect all items in this folder.
To automatically display the report after processing, select "Show report after run".
To display the last report generated, click the "Report” path link. v

Help

For more information, see Run Model Advisor Checks for HDL Coder.

Updates to model checks in HDL Coder

Checks Added

For native floating-point support, the code generator has added these checks.

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_d7728682-fd62-4fde-b4b3-6aae3c28c174.html

Model and Architecture Design

* Check for HDL Reciprocal block usage: Checks whether your model contains HDL
Reciprocal blocks that use floating-point types. This check then recommends replacing
these blocks with Math Reciprocal blocks to save area and improve accuracy of your
design.

* Check for Relational Operator block usage: Checks whether Relational Operator
blocks that use floating-point types have Boolean outputs.

* Check for large matrix operations: Checks whether your model contains matrix
inputs with more than two dimensions or contains large matrix operations that result
in a matrix output with more than ten elements.

Checks Updated
The code generator has updated these checks:

* The Check for infinite sample time sources has been updated to the Check for
infinite and continuous sample time sources.

* The Check for Data Type Conversion blocks with incompatible settings has been
updated to check whether the blocks use the Stored Integer (SI) conversion
mode while converting between floating-point and fixed-point data types. Previously,
this check detected whether the blocks used the Stored Integer (SI) conversion
mode and whether the Integer rounding mode was set to Nearest.

For more information, see Model Checks in HDL Coder.

Enhanced Radix-4 algorithm for Divide and Reciprocal blocks
in Native Floating Point mode

The code generator now supports a Radix -4 mode for Divide and Reciprocal blocks with
single data types in the Native Floating Point mode.

The previous Radix-2 mode, which is currently the default, offers a trade-off between
latency and frequency. In R2018a, by using the Radix -4 mode, you can trade-off your
design between latency and resource usage.

To learn more, see DivisionAlgorithm.

3-3

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/overview-of-checks-in-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/divide.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_c7ca146c-47f4-4581-9967-9293f41f07cd

R2018a

3-4

Improved shift-and-add algorithm for exponential and
hyperbolic functions in Native Floating Point mode

The code generator now uses an improved shift-and-add algorithm for the exponential
and hyperbolic functions in Native Floating Point mode. This algorithm has a
smaller ULP error of 1, uses less resources on the target device, and achieves a higher
clock frequency maximum with less latency.

The improved shift-and-add algorithm supplements the previous shift-and-add algorithm
with the Taylor polynomial approximation when the absolute error is small. This algorithm
reduces the number of iterations of shift-and-add operations that are required to achieve
the desired accuracy.

To see the latency and ULP of floating-point operators:

» ULP of Native Floating-Point Operators
* Minimum and Maximum Latency of Floating Point Operators

HDL code generation support for all rounding modes of Data
Type Conversion block in Native Floating Point mode

The code generator now supports all Integer rounding mode options for the Data Type
Conversion block with single data types in Native Floating Point mode. Using the
various supported rounding modes, you can easily convert between single and fixed-
point data types in your design and use the same block settings for the blocks in floating-
point and fixed-point domains.

Previously, the code generator supported the Nearest rounding mode for floating-point
operations. If you used other rounding modes, you ran the Check for Data Type
Conversion blocks with incompatible settings in the HDL Model Checker to convert
the rounding mode to Nearest.

Floating-point control for Multiport Switch and Selector
blocks

The code generator now supports single-precision floating-point data types as control
input to the Multiport Switch and Selector blocks in the Native Floating Point
mode.

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/numerical-considerations-with-native-floating-point.html#mw_693720de-d034-4692-9a92-87109e891def
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/multiportswitch.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/selector.html

Block Enhancements

Block Enhancements

Matrix Support: Generate HDL code directly from two-
dimensional matrix data types and operations

In R2018a, you can use two-dimensional matrix data types and operations in your
Simulink model for HDL code generation. With HDL Coder support, you can:

Model complicated math operations by using Matrix types easily.

Use matrix types with all supported data types that include fixed-point, single-
precision native floating-point, complex, and bus types.

Use matrix types with all optimizations, particularly resource sharing.

Generate HDL code, verify the generated code, and deploy the code onto a target
platform when you use matrix data types for a subset of Simulink blocks in your
model.

To learn about the block subset and how to use matrix types, see Signal and Data Type
Support. See also Matrix Multiply.

Additional blocks and block modes supported for HDL code
generation

HDL Coder now supports these blocks and block modes:

PartMultiplierPartAddShift mode of mantissa multiplication for the sin and
cos Function modes of the Trigonometric Function block. You can specify this mode
by using the Mantissa multiply strategy setting in the Configuration Parameters
dialog box or in the Native Floating Point tab of the HDL Block Properties for the
sin and cos functions.

Denormal handling support for the Gain block by power of two.

External reset port with mode set to none, rising, or falling for the Discrete-Time
Integrator block with fixed-point and single data types.

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/matrixmultiply.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/discretetimeintegrator.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/discretetimeintegrator.html

R2018a

3-6

Bit-Natural FFT Output: Directly access the bit-natural output
from the frame-based FFT/IFFT (Requires DSP System
Toolbox)

You can now select bit-natural output order, with any input order, when using the frame-
based mode of the HDL-optimized FFT and IFFT. Before R2018a, input and output data
had to be in opposite order. The order of the input and output data are no longer
restricted for these blocks and System objects:

* FFT HDL Optimized

» [IFFT HDL Optimized

o dsp.HDLFFT

e dsp.HDLIFFT

Compatibility Considerations

Before R2018a, the output order of the Channelizer HDL Optimized block was bit-
reversed when you set Output vector size to Same as input size. The output order
is now bit-natural for both output sizes. This change also affects the
dsp.HDLChannelizer System object.

LTE OFDM demodulation and Gold sequence generation blocks
(Requires LTE HDL Toolbox)

LTE HDL Toolbox introduces two new HDL-supported blocks for LTE system design:
* Gold Sequence Generator — Generate LTE-standard Gold sequences for channel
estimation and descrambling.

* OFDM Demodulator — Demodulate orthogonal frequency-division multiplexing
symbols according to the LTE standard.

Additional pipelining of HDL-optimized Complex to Magnitude-
Angle (Requires DSP System Toolbox)

To improve synthesized clock frequency and make better use of DSP blocks on FPGAs, the
Complex to Magnitude-Angle HDL Optimized block has additional pipelining. This change
also affects the dsp.HDLComplexToMagnitudeAngle System object.

https://www.mathworks.com/help/releases/R2018a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlifft-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlchannelizer-system-object.html
https://www.mathworks.com/help/releases/R2018a/ltehdl/ref/goldsequencegenerator.html
https://www.mathworks.com/help/releases/R2018a/ltehdl/ref/ofdmdemodulator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlcomplextomagnitudeangle-system-object.html

Block Enhancements

Compatibility Considerations

The latency of the block and System object is three cycles longer than in previous
releases. You must adjust the delay balancing of parallel data paths. The latency is
displayed on the block.

5G filtered-OFDM modulation reference application (Requires
LTE HDL Toolbox)

This example implements an F-OFDM transmitter suitable for 5G transmitter designs and
verifies the design by using the 5G Library for LTE System Toolbox®. The example
supports HDL code generation. It shows how to convert from double to fixed-point types
and how to minimize the resource use of the design on an FPGA.

R2018a

Code Generation and Verification

3-8

Line-Level Traceability: Navigate directly between Simulink
blocks and corresponding lines of generated HDL code

In R2018a, when you generate the traceability report with the HDL code, the code
generator provides line-level control of model-to-code and code-to-model traceability.

Previously, code-to-model and model-to-code navigation depended on block comments in
the generated HDL code. In R2018a, HDL Coder does not generate block comments and
provides more precise code-to-model and model-to-code traceability to lines of HDL code
instead of comments. Using the report, you can now easily navigate between the blocks in
your Simulink model and the generated HDL code.

For more information, see Navigate Between Simulink Model and HDL Code by Using
Traceability.

Microsemi FPGA Support: Specify Microsemi Libero SoC as
Synthesis Tool and generate HDL code

The code generator now supports Microsemi Libero SoC as a Synthesis Tool that you
can specify in the HDL Code Generation > Target and Optimizations pane of the
Configuration Parameters dialog box. When you use the Native Floating Point
support in HDL Coder and generate code, the default Auto mode for the Mantissa
Multiply Strategy setting maps your design efficiently to the multiply-accumulate (MAC)
units on the Microsemi Libero FPGAs.

To specify Microsemi Libero SoC as a Synthesis Tool in the HDL Workflow Advisor,
set up the path to your Synthesis Tool by using the hdlsetuptoolpath function. After
you specify the tool, you can:

* Generate HDL code and verify with HDL cosimulation when you run the Generic
ASIC/FPGA workflow.

* Run the FPGA-1in-the-Loop workflow for your target device.

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/traceability-report.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/traceability-report.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/hdlsetuptoolpath.html

Code Generation and Verification

Concise summary of synthesis results displayed in HDL
Workflow Advisor

The HDL Workflow Advisor now displays more concise information about the area usage
and timing of your design. For additional information, the Advisor provides easily
navigable links to the relevant synthesis files.

To obtain the concise report, in the Set Target Device and Synthesis Tool task,
Synthesis Tool must be Xilinx Vivado or Altera Quartus II, and Target
workflow must be Generic ASIC/FPGA.

For example, this figure shows the resource report when you run the Perform Mapping
task in the HDL Workflow Advisor.

Passed Mapping.

Parsed resource summary file: FOC _Current_Control _guartus.map.rpt

Resource sumim ary

Combinational ALUTs |3—1fi'5
Dedicated logic registers 48246
DSP block |8-bit elements 108

Parsed timing summary file: FOC _Current_Control_preroute.tgr

Timing summary

et

Data Delay 3.584
Slack -2657
Timing constraints not met

New Code Generation Report: View more information and
navigate through code generation results more easily

In R2018a, the code generation report has a new user interface, more information, and
improved navigation.

3-9

R2018a

REPORT =
o o GeTo = ‘ i
Back Forward U\Frl:l Trace Edit In Package
Code MATLAB Code~
NAVIGATE TRACE EDIT ‘ SHARE ‘
MATLAB SOURCE mihdlc_sfirvhd Entry-Point Summary Code Generation Config
Function List Call Tree 38 LIBRARY IEEE;
E £ mihdic_sfirm 39 USE IEEE.std_logic_1164.ALL;
4@ USE IEEE.numeric_std.ALL;
fx mihdlc_sfir P —

42 ENTITY mlhdlc_sfir IS
13 PORT(clk : IN std_logic;
44 reset : IN std_logic,
45 clk_enable : IN std_logic;
46 ¥_in : IN real; -- double
a7 h_in1 : IN real; -- double
48 h_in2 : IN real; -- double
49 h_in3 : IN real; -- double
-] h_in4 g IN real; -- double
51 ce_out : 0UT std_logic;
52 y_out : OUT real; -- double
53 delayed_xout : ouT real -- double
c4 NE

GENERATED COD 55 END mlhdlc_sfir;

E = Generated HDL Files 56
. mihdlc_sfirvhd ad

SUMMARY ALL MES SES (0 CODE INSIGHTS (0 VARIABLES

© Code generation successful

Generated on: 02-Nov-2017 15:41:59
Build type:
Output file: C:\Users\ggnanasel\AppData\Local\Temp\mlhdlc_sfircodegen\mlhdlc_sfirthdlsrc
Processor: Generic->MATLAB Host Computer
Version: ~ HDL Coder 3.11 (R2018a Prerelease), MATLAB Coder 4.0 (R2018a Prerelease)
Notices: -
Details: Entry Points = Settings
Reports: Conformance Report Resource Report

You can now:

* View the HDL code with syntax highlighting.

3-10

»l

14

Code Generation and Verification

* Find more information on the Summary tab, including code generation settings, entry
points, and links to the Conformance Report, Resource Report, and Compliance
Report.

* Navigate from the MATLAB code to context-sensitive information. For example, if you
double-click a variable in the MATLAB code, you see the variable in the Variables tab.

In R2018a, the report is located in the same folder as in previous releases, but has a
different file format. In previous releases, the report was saved with an HTML format and
consisted of many files. In R2018a, the report is saved as one file with an .mldatx file
extension.

For more information, see Code Generation Reports.

Compatibility Considerations
If you generate a report in R2018a, you cannot open it in a previous release. In R2018a,

you can open reports that you generated in a previous release, but they look and behave
as they did in that previous release.

3-11

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/code-generation-reports.html

R2018a

Speed and Area Optimizations

3-12

Critical Path Estimation with Native Floating Point: Report
critical path for designs with single-precision floating-point
operations

You can now estimate the critical path of your single-precision floating-point designs in
Simulink without running synthesis. Use critical path estimation to improve timing by
quickly iterating through finding and pipelining the critical path in your design.

For more information, see Critical Path Estimation Without Running Synthesis.

Simplification of constant operations and other optimizations
for fixed-point and floating-point arithmetic operations

The code generator now evaluates components whose inputs are constants and
substitutes the components with other simplified components by propagating the constant
value. This optimization avoids redundant computations during simulation and improves
area and timing on the target device.

By creating modeling patterns that use a combination of these optimizations, you can
significantly improve the performance of your design on the target hardware.

For more information, see Constant Folding and Peephole Optimizations in HDL Coder.

Improvement to reduction of matching delays in clock-rate
pipelining regions across hierarchical boundaries

Clock-rate pipelining can introduce a latency in parts of your design that are
combinational. The algorithm that the code generator uses attempts to minimize the
delays within a clock-rate pipelining region. In R2018a, the code generator can reduce
the delays further within a clock-rate pipelining region while preserving the hierarchy of
the subsystems in your model.

For example, consider this Simulink model that has back-to-back subsystems inside a
feedback loop. Each Subsystem contains a Gain block and an Add block. When you specify
an Oversampling factor and generate code without flattening the subsystem hierarchy,
HDL Coder introduces matching delays to balance the clock-rate pipelines. In R2017b,

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_2227193a-ce24-4917-a58a-c59abded0ec7.html

Speed and Area Optimizations

the code generator reduces the matching delays in the clock-rate pipelining region at the
output Subsystem. In R2018a, the code generator can further reduce the latency by
traversing the path to identify matching delays in other Subsystem blocks that can be

reduced.
-
O P S n e EP)
dalayMatch
3 >
= D
Gain1_outbufl_oul_pipe
delayMatch2
L5 FH—»
Gainl_gcutbufl_out_pipe2
delayMatch3
7 [
e D
Gainl_outbufl_out_piped

See also Clock-Rate Pipelining.

dalayMatchl —L

Gain1_outbufl_out_piped

[L

Gain1_outbufl_oul_pipe3

H

L

Gain1_sutbufl_oul_pipes

H

D

Original model

Delay balancing in
Generated model

Generated model
{In R2017h)

Generated model
{In R20184a)

3-13

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/clock-rate-pipelining.html

R2018a

3-14

MaxOversampling and MaxComputationLatency parameters
being removed

The MaxOversampling and MaxComputationLatency parameters are being removed.
Replace these parameters with Oversampling factor and use Oversampling factor in
conjunction with clock-rate pipelining.

Compatibility Considerations

In R2018a, if you load a pre-R2018a model that has the MaxOversampling or
MaxComputationLatency parameters saved on the model and then generate code, HDL
Coder generates a warning and ignores the parameter values during code generation. To
avoid this warning, use hdlset param to set MaxOversampling and
MaxComputationLatency to their default values of Inf and 1 respectively. Specify the
Oversampling factor, enable Clock-rate pipelining, and then generate HDL code.

See also Optimization with Constrained Overclocking.

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/optimization-without-overclocking.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

AXl4-Stream for Intel FPGA: Generate IP cores with the AXI4-
Stream interface targeting Intel FPGAs

You can now use the IP Core Generation workflow to generate an HDL IP core with AXI4-
Stream interface for targeting Intel FPGAs. Using the AXI4-Stream interface, you can:

* Connect to other IP cores that have AXI4-Stream interface.
» Target high-speed signal processing and video processing applications on Intel FPGAs.

To learn how to model your design, see Model Design for AXI4-Stream Interface
Generation.

To generate an IP core with AXI4-Stream interface for Intel devices using the HDL
Workflow Advisor:

1 In the Set Target Device and Synthesis Tool task, specify IP Core Generation
as the Target workflow and Generic Altera Platform as the Target platform.

2 In the Set Target Interface task, you can assign ports to AXI4-Stream master and
slave interfaces in the Target platform interface table. Run the workflow to
generate the IP core.

You can integrate the generated IP core into your own custom Intel reference design. To
learn more, see Define and Register Custom Board and Reference Design for Zynq
Workflow.

Intel SoC Reference Design: Target the Intel Arria 10 SoC
Development Kit with DDR4 external memory access

You can use a new Default system with External DDR4 Memory Access
reference design when you specify Altera Arrial® SoC development kit asthe
target platform. To use this reference design, you must have HDL Verifier and the HDL
Coder Support Package for Intel SoC Devices.

When you use this reference design, you can access the DDR4 external memory on the
Arria® 10 SoC development kit with AXI4 Master interface. Using AXI4 Master interface,
you can also create custom reference designs for other Intel FPGAs and Intel SoCs for
external memory access.

3-15

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/model-design-for-axi4-stream-interface-generation.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/model-design-for-axi4-stream-interface-generation.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/examples/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/examples/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html

R2018a

3-16

For more information. see Default System with External DDR4 Memory Access Reference
Design.

Simulink test point port mapping in IP Core Generation and
Simulink Real-Time FPGA 1/0 workflows

The code generator now supports test point ports in IP Core Generation and Simulink
Real-Time FPGA 1/0 workflows that use Xilinx Vivado and Intel Quartus Prime as the
synthesis tools.

When you enable DUT output port generation for test point signals in the HDL code and
use the IP Core Generation workflow infrastructure, you can map the test point ports
to AXI4, AXI4-Lite, or External Port interfaces in the Target platform interface table.
The code generator stores this interface mapping information for the test point ports on
the DUT that you can reload across subsequent runs of the workflow.

When you run the IP Core Generation workflow and generate the software interface
model, you see the test point output port connected to a commented out Scope block for
observing and debugging the signals.

To learn more, see Model and Debug Test Point Signals with HDL Coder™.

Audio Reference Design Example on ZYBO Board: Create
custom reference design to run audio algorithm on ZYBO
board

This HDL Coder example extends the audio reference design example on the ZedBoard™
to the ZYBO™ board. Using this example, you can learn how to create a custom reference
design that receives audio input from the ZYBO board, processes the input signal, and
transmits the processed audio output.

IP Core Generation of 12C Master Controller Example:
Generate IP core for Stateflow-Based 12C Master Controller to
configure Audio Codec chip

Using this HDL Coder example, you can learn how to model a generic I2C Master
Controller in Simulink by using Stateflow blocks. Use the Master Controller to model an
12C Controller that can configure the Audio Codec chip. Then, run the IP Core

https://www.mathworks.com/help/releases/R2018a/supportpkg/alterasochdlcoder/ug/default-system-with-external-ddr4-memory-access-reference-design.html
https://www.mathworks.com/help/releases/R2018a/supportpkg/alterasochdlcoder/ug/default-system-with-external-ddr4-memory-access-reference-design.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_7cdfb594-d7c6-4cf5-8370-6ae1b9d1abf1.html

IP Core Generation and Hardware Deployment

Generation workflow to generate an HDL IP core for the 12C Controller. You can use the
generated I12C Controller IP core in your custom reference design.

Ethernet programming method being removed
The Ethernet programming method is being removed. Use the Download method to

program your target device.

Compatibility Considerations

In R2018a, if you run an HDL Workflow script that uses Ethernet as the programming
method, HDL Coder generates an error. If you use Ethernet as the programming method
and export the Workflow Advisor settings to a script, you see this code snippet in your
script:

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Ethernet

To avoid this error, in your script, change the programming method to Download. Then,
run the script.

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Download
You can also use JTAG and Custom as the programming methods.

For more information, see Program Target FPGA Boards or SoC Devices.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2017.2
* Intel Quartus Prime 17.0

See Supported Third-Party Tools and Hardware.

3-17

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/program-target-soc-device.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/gs/language-and-tool-version-support.html

R2017b

Version: 3.11
New Features

Bug Fixes

R2017b

Model and Architecture Design

4-2

Model Advisor Checks: Check and update your Simulink model
for HDL code generation compatibility

With the Model Advisor support in HDL Coder, you can now check and update your
Simulink model or subsystem for compatiblity with HDL code generation. The Model
Advisor checks for model configuration settings, subsystems and block settings, support
with native floating point, and conformance to industry standard rules.

You can run all the checks, a certain group of checks, or individual checks in the Model
Advisor. To fix warnings or failures that are reported by the checks, use the Model Advisor
recommended setings. To open the Model Advisor checks for HDL Coder at the command
line, use the hdlmodelchecker function.

For more information, see:

* Getting Started with the HDL Model Checker
* Checks In the HDL Model Checker

Simulink Test Points in HDL: Debug internal signals by
automatically routing the signals to top-level HDL ports

Test points are signals that you can use to easily debug and observe the simulation results
at various points in your Simulink model. In R2017b, with the HDL code generation
support for test points, you can now generate code for these signals and further debug
the generated code in downstream workflows. See also Test Points (Simulink).

To see the test point signals in the generated HDL code:

* From the U], in the Configuration Parameters dialog box, select Enable HDL DUT port
generation for test points.

* At the command line, specify EnableTestpoints with hdlset param or makehdl.

When you generate HDL code, the code generator creates an output port for the test
point signal, and then propagates the signal to the DUT as an additional output port. This
capability makes debugging your design easier because the code generator can propagate
signals marked as test points deep within your Subsystem hierarchy to the DUT output
ports.

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdlmodelchecker.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/getting-started-with-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/overview-of-checks-in-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/working-with-test-points.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-code-generation-pane-global-settings-1.html#mw_fa72c806-816f-42f5-900e-ca39a51f0ed6
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-code-generation-pane-global-settings-1.html#mw_fa72c806-816f-42f5-900e-ca39a51f0ed6
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/enabletestpoints.html

Model and Architecture Design

For an example, see Model and Debug Test Point Signals with HDL Coder™.

Floating-point Support for Simulink Real-Time FPGA 1/0:
Generate single-precision floating point HDL for
communication over the Simulink Real-Time PCle Interface

When you use the Simulink Real-Time FPGA I/0 workflow, you can have Single
data type signals at the subsystem DUT ports and map the signals to PCle or PCI
Interfaces in the Target platform interface table. To map Single data type signals to
PCle interfaces, in the Configuration Parameters dialog box, on the HDL Code
Generation> Global Settings> Floating Point Target tab, set the Floating Point
Library to Native Floating Point.

Additional single-precision floating-point operators and block
support

HDL Coder now supports these blocks with native floating point:

* Direct Lookup Table (n-D)
* HDL Reciprocal
* Comprehensively supports all Function modes of Math Function block.

* Supports all Function modes of Trigonometric Function block except asinh, acosh,
and atanh.

* Float Typecast

The code generator now supports these block modes:

» Switch block where Criteria for passing first input can be u2 > Threshold, u2
>= Threshold, or u2 ~= 0. Previously, to generate HDL code in native floating-point
mode, you had to use u2 ~= 0 as the Criteria for passing first input.

* Relational Operator block where Relational Operator parameter when you input
single data type signals can be isInf, isNaN, or isFinite. The modes check and
output true for inf or -inf, nan, and so on.

See Also Simulink Blocks Supported with Native Floating-Point.

4-3

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/_mw_7cdfb594-d7c6-4cf5-8370-6ae1b9d1abf1.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/floattypecast.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html

R2017b

4-4

Improvements to native floating-point operators and
algorithms

In R2017b, HDL Coder provides optimized algorithms for these blocks or operators in the
native floating-point mode.

* When you use an Add or Subtract block, the implementation is now more optimal and
uses fewer resources. The reduction in area usage on the target device is due to the
block implementation using a simpler logic to handle inf and nan inputs and
performing the addition or subtraction of the input mantissas using two 28-bit adders
instead of one 48-bit adder.

» Ifyou use a Data Type Conversion block that converts from Single to a boolean data
type, the generated model uses Bit Slice blocks to extract the exponent and mantissa,
and then compares the result with zero. When you convert from ufix1 to a Single
data type, the generated model uses a Switch block. These block implementations are
more optimal and use fewer hardware resources.

* Ifyou use a Gain block with Gain parameter set to 1, the generated model uses a wire
to pass the input to the output. For a Gain parameter of -1, the generated model
shows a Unary Minus block that inverts the polarity of the input signal. These block
optimizations use zero latency and reduces the resource usage on the target platform.

Input Range Reduction setting for Trigonometric Function
blocks in native floating-point mode

If you have Single data type inputs to the Trigonometric Function block, you can use the
InputRangeReduction setting in the Native Floating Point tab.

By default, this setting is enabled for the block, and it assumes that your input range is
unbounded. If your input to the block is bounded in the range [-pi, pi], your design
does not require the logic to reduce the input range. In that case, you can disable this
setting, and the block implementation incurs a lower latency and uses fewer resources on
the target device.

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#mw_cf86659f-f21c-4eaf-a555-d573d12a9659

Model and Architecture Design

Block-level latency customization for Discrete Transfer
Function and Discrete Time Integrator blocks with native
floating-point

For the Discrete Transfer Fcn and Discrete-Time Integrator blocks, you can now specify

native floating point settings at the block level which includes HandleDenormals,
LatencyStrategy, and MantissaMultiplyStrategy settings.

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/discretetransferfcn.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/discretetimeintegrator.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmml4t-1
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmwbnb-1
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmwcnl-1

R2017b

Block Enhancements

4-6

Minimum Resource FFT/IFFT: Reduce resource usage with the
Burst Radix 2 architecture of the HDL-Optimized FFT (requires
DSP System Toolbox)

You can now choose a minimum resource architecture for the HDL-optimized FFT blocks
and System objects. To use this feature, select the Burst Radix 2 architecture in these
blocks and System objects:

* FFT HDL Optimized

* IFFT HDL Optimized

* dsp.HDLFFT

o dsp.HDLIFFT

Support for scalar addressing mode with vector data input to
hdl.RAM System Object

You can now use a scalar address mode with vector data input to the hdl.RAM System
Object. With a vector data input, the write enable and address inputs can be scalar, and
the system object applies the same operation to each RAM bank.

Previously, the inputs to the system object had to be all scalars or all vectors.

New HDL RAMs Block Library and hdl.RAM System Object
based blocks

The HDL Coder block library in Simulink now has an HDL RAMs block library that
consists of all RAM blocks and new MATLAB System blocks that are based on the
hdl.RAM System object. These blocks are the Dual Port RAM System, Simple Dual Port
RAM System, and Single Port RAM System. Previously, all RAM blocks were part of the
HDL Operations block library.

https://www.mathworks.com/help/releases/R2017b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlifft-system-object.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdl.ram-system-object.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/dualportramsystem.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/simpledualportramsystem.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/simpledualportramsystem.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/singleportramsystem.html

Block Enhancements

HE Sirnulink Library Browser

&

| Enter search term

HDL Coder/HDL RAMs

(1) Some libraries are missing repository information. Fix

L
o

v HODL Coder

<

Commenly Used Blocks
Discantinuities
Discrete

HOL Floating Point Ope
HOL Operations

HDL RAMs

HDL Subsystems

Logic and Bit Operatior
Lookup Tables

Math Operations
Model Verificaticn
Model-Wide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing

Sinks

Sources

User-Defined Functions:

LM A feeifime

>

~

W

W wr_din
N wr_addr
) Wr_an
b

rd_gddr

Dual Paort RAM

wr_din

wir_addr

wr_an

rd_gddr

Simple Dual Port RAM

wr_doit [»

rd_dout [

b
.
rd_dout [
b
b

Ndin
wr_dout
Mwr_addr -
Dual Part
RAM
Hwr_en
rd_dout
7

rd_acddr

Dual Port RAM System

din

wr_addr Simpla

Dwal Port rd_dout
]

Wr_en

rd_addr

Simple Dual Port
RAM System

din_#&
addr_A doul_f ¥
wa_f,
din_B
addr_B daut_B ¥

we_B

al Rate Dual Port RAM

din

addr dout [y

we

Single Port RAM

Emply
Push
? Full

A "

Mum

HDL FIFO

S

Single Port
addr BAM dout [

Nwr_en

Single Port RAM System

With the hdl.RAM System Object based blocks, you can:

* Specify an initial value for the RAM. Double-click the block to open the Block
Parameters dialog box, and then enter a value for Specify the RAM initial value.

* Obtain faster simulation results when you use these blocks in your Simulink model.

* Create parallel RAM banks when you use vector data by leveraging the hd1.RAM

System object functionality.

* Obtain higher performance and support for large data memories.

Synchronous versions of Unit Delay blocks with reset and
enable ports in Discrete block library

In R2017b, the code generator introduces synchronous versions of the Unit Delay block
with reset and enable ports in the Discrete block library in the HDL Coder library. The

4-7

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdl.ram-system-object.html

R2017b

blocks correspond to Unit Delay Enabled Synchronous, Unit Delay Resettable
Synchronous, and Unit Delay Enabled Resettable Synchronous.

S8 Simulink Library Browser — O *
& |E'l-:';‘--::.'n:'|;-:"| V|‘p¢4‘ v O+ @
HDL Coder/Discrete
:?‘l Some libraries are missing repository information. Fix x
% HOL Coder A 1 M
Commenly Used Blocks q = ME 1 vl
Discontinuities d b [z
Discrete _ Unit Delay Unit Delay Enabled Resettable
HDL Floating Point Operations Synchronous
HOL Operations
HDL RAMs Ay b [
HDL Subsystems Y 4 Y& >ovp
Logic and Bit Operations
Lockup Tables W Unit Delay Enabled Unit Delay Resettable
< > Synchronous Synchronous

The blocks use the Enabled Delay, Resettable Delay, and the Enabled Resettable Delay
block with a Delay length of 1 in combination with the State Control block in
Synchronous mode. The synchronous behavior of the State Control block generates
cleaner HDL code and uses fewer hardware resources.

Bilateral filter, bird's-eye-view transform, and line buffer for
vision applications

Vision HDL Toolbox introduces three blocks that support HDL code generation for
streaming video processing designs:

* Bilateral Filter — Perform Gaussian filtering with edge preservation

* Birds-Eye View— Transform forward-facing video to a top-down perspective

* Line Buffer — Store a sliding window of pixels as part of developing custom filter
algorithms

4-8

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayenabledsynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayresettablesynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayresettablesynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayenabledresettablesynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/statecontrol.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/linebuffer.html

Block Enhancements

HDL code generation support for Bus Element port blocks

In R2017b, you can generate HDL code for Simulink models that use the In Bus Element
and Out Bus Element blocks. These bus element port blocks provide a simple and flexible
way to use bus signals as inputs and outputs to subsystems.

See also Simplify Subsystem Bus Interfaces (Simulink).

One-hot and two-hot encoding schemes for enumeration
types

You can now use one-hot, two-hot, and binary encoding schemes to represent enumerated
types in the generated HDL code. By default, the code generator uses a decimal encoding

in Verilog and VHDL-native enumerated types in VHDL. To choose a different encoding
scheme:

* From the UI, open the Configuration Parameters dialog box, and in the HDL Code
GenerationGlobal SettingsCoding Style tab, specify Enumerated Type Encoding
Scheme.

At the command line, use EnumEncodingScheme.

This table shows the generated Verilog code from various encoding schemes for a
Stateflow Chart that has four states.

Encoding Schemes

Default Binary One-Hot Two-Hot

parameter parameter [parameter parameter

is Chart IN s idle = 2'd0, |is Chart INis Glidet=IR'$0Ddle = 4|bOOOAart IN s fidle
is Chart IN s rx = 2'd1, is Chart INis Ghart 2THO4,rx = 4'bQO30Chart IN s [rx =
is Chart IN s wait @ = 2'd2,/is Chart INis Qlartt OIN 2 oDt 0 =|4sbOhB6T IN s pait
is Chart IN s wait tb = 2'd3jis Chart INis Glartt thN =s 2dbild;tb +id'66866;IN s pait

Custom header and footer comments in generated HDL code

In R2017b, you can specify custom header and footer comments for the generated HDL
code. Using these custom comments, you can create templates for the header and footer
comments that you can reuse across multiple designs. For example, you can specify
arguments such as title, author, modified date, and so on.

4-9

https://www.mathworks.com/help/releases/R2017b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/simplify-subsystem-bus-interfaces.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/enumencodingscheme.html

R2017b

//

// Title 1 <%Title%>

// Project : <%Project%s>
// Author 1 <%Authors>
//

// Revision : $Revision$
// Date Modified : $Date$

//

* From the UI, open the Configuration Parameters dialog box, and in the HDL Code
Generation > Global Settings > Coding Style tab, specify File Comment
Customization and Custom File Header Comment.

At the command line, use CustomFileFooterComment and
CustomFileHeaderComment.

4-10

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/customfilefootercomment.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/customfileheadercomment.html

Code Generation and Verification

Code Generation and Verification

Changes to HDL Code Generation Panel in Configuration
Parameters Dialog Box

Parameters Added

Enable HDL DUT port generation for test points in the Global Settings >
Ports tab

In the Global Settings > Coding style tab:

* Enumerated Type Encoding Scheme

* Custom File Header Comment

* Custom File Footer Comment

Enable-based constraints in the Target and Optimizations > General tab

Check for presence of reals in generated HDL code in the Global
Settings > Diagnostics tab

Parameters Moved

These parameters moved from the Target and Optimizations > General tab to the
Global Settings > Coding Style tab:

* Optimize timing controller check box

* Timing controller architecture

The Generate multicycle path information check box in the EDA Tool
Scripts tab moved to the Target and Optimizations > General tab and is now
called Register-to-register path info.

4-11

R2017b

Speed and Area Optimizations

4-12

Vector Input Multiply-Accumulate (MAC) Block: Map
arithmetic operations efficiently to FPGA DSP slices

The code generator now supports a Multiply-Accumulate block that performs a multiply-
accumulate operation on the input vectors and efficiently maps the generated HDL code
to DSP units on the target FPGA device. Using the block, you can:

* Perform matrix multiplication operations. For example, if you have two matrix inputs
with dimensions N-by-M and M-by - P, you can compute the result by using N-by-P
multiply-accumulate operations in parallel. By combining these operations with
optimizations such as resource sharing and streaming, you can improve the hardware
performance by efficiently mapping the generated HDL code to DSP units on the
FPGA.

* Replace a sequence of multiplication and addition operations, such as in filter blocks,
and improve the performance on hardware by mapping to DSP slices on the FPGA.

The Multiply-Accumulate block is available in the HDL Operations sublibrary in the HDL
Coder block library. The block has Auto, Parallel, and Serial HDL Architecture
implementations that you can choose from.

Hierarchical Clock Rate Pipelining: Apply clock rate pipelining
across hierarchical boundaries

You can now use clock rate pipelining more widely across subsystem boundaries without
having to flatten the hierarchy. Preserving the subsystem hierarchy:

* Improves the modularity of your design and makes navigation through the generated
model easier especially in large designs with complex hierarchies.

* Improves readability of the generated HDL code by creating multiple Verilog or VHDL
files for the various Subsystem blocks in your design.

To use this optimization, disable FlattenHierarchy on the top-level DUT Subsystem. See
also Clock-Rate Pipelining.

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/multiplyaccumulate.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/clock-rate-pipelining.html

Speed and Area Optimizations

Support for enable-based multicycle path constraints

In multirate designs with a single clock signal, use Enable based constraints to meet
the timing requirements for data paths operating at a rate slower than the base rate. HDL
Coder generates a constraints file that specifies the enabled-based multicycle path
constraints.

Previously, to generate the multicycle path information, you used the
MulticyclePathInfo setting. This setting corresponds to the Register-to-register
path info in the Target and Optimizations > General tab. Now, to generate the
multicycle constraints file:

* In the Configuration Parameters dialog box, on the Target and Optimizations pane,
select the Enable based constraints check box.

* At the command line, use MulticyclePathConstraints.
When you use Enable based constraints:

* The generated constraints are more robust to name changes in synthesis tools.
* HDL code generation is faster than when you use the Register-to-register path info
setting.

For more information, see Meet Timing Requirements Using Enable-Based Multicycle
Path Constraints.

Clock-rate pipelining enhancements
Latency reduction in the presence of design delays

The code generator can now absorb design delays that have a delay length greater than
1 inside a clock rate pipelining region. This optimization avoids the additional latency by
accommodating the slower design delays as part of the faster clock-rate pipeline
registers. Based on the length of the design delay and the Oversampling factor that you
specify, HDL Coder inserts a certain number of pipeline registers that is equal to the
Oversampling factor times the delay length.

Resource sharing improvements with clock rate pipelining

The code generator now does not have to add matching delays at the input and output
ports when the resource sharing optimization is applied within a clock rate pipelining

4-13

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/multicyclepathconstraints.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/enable-based-multicycle-constraints.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/enable-based-multicycle-constraints.html

R2017b

region. This optimization reduces the latency and resource usage significantly, especially
for large values of Sharing factor.

This figure shows the generated model when resource sharing is applied in a clock rate
pipelining region in R2017b and prior releases.

R2017a and earlier In R2017b
®—L glabalSchedule
.—’ in0 glub#du\e

in1
delayMalch
in1
o-F@d L . D
C
delayMatch1 ! outd ——— mux Y N outd
- ot P ot
) = delayMatchd e
2 Seralizer_Subnetwotk T Senalizor_Subnanwork 'ED)
a fim Gain20_o 1 im -
™ delmhatch2 20 demx @ A Geind damux =
out2
a3) delayMatchs atr 31 — demux
- o

4-14

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

AXl4 Master Interface: Facilitate communication between your
design and external memory by using the AXI4 Master
protocol for more flexible data access

When your design uses algorithms that require accessing large data sets from an external
memory, you can generate an HDL IP core with AXI4 Master interface that can
communicate between your design and the external memory controller IP by using the
AXI4 Master protocol. Use the AXI4 Master interface when your:

* Design targets multiframe video processing applications. You can store the image data
in external memory, such as a DDR3 memory on board, and then read or write the
images to your design in a burst fashion for high-speed processing.

* Algorithm must access memory data in a nonstreaming arbitrary pattern.

* DUT IP core must control other IPs with the AXI4 slave interface in the system. This
capability is especially useful in standalone FPGA devices.

If you use Xilinx Zynq ZC706 evaluation kit as the Target platform, you can
integrate the generated HDL IP core into the Default system with External DDR3
Memory Access reference design. Optionally, you can integrate the HDL IP core with
AXI4 Master Interface into your own custom reference design by using the
addAXI4MasterInterface method of the hdlcoder.ReferenceDesign class.

To learn more, see Model Design for AXI4 Master Interface Generation.
IP Core Generation Support for Xilinx System Generator:

Generate an HDL IP core for DUT containing System Generator
blocks

When you use the IP Core Generation workflow or workflows that use the IP Core
Generation workflow infrastructure such as Simulink Real-Time FPGA I/0, you
can have Xilinx System Generator Subsystem blocks inside the DUT.

To learn how to generate HDL code from your DUT containing Xilinx System Generator
blocks, see Using Xilinx System Generator for DSP with HDL Coder.

4-15

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/model-design-for-axi4-master-interface-generation.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/using-xilinx-system-generator-for-dsp-with-hdl-coder.html

R2017b

4-16

INOUT port type support for External Port interface in IP Core
Generation workflow

With the IP Core Generation workflow, you can now specify INOUT port types on a
blackbox subsystem and then map the corresponding DUT ports to External Port
interfaces in the Target platform interface table when you run the workflow.

To learn how to specify INOUT port types, see Specify Bidirectional Ports.

Faster Simulink Real-Time FPGA 1/0 model build time with
version register in generated IP core

For the newer Speedgoat boards that use the IP Core Generation workflow
infrastructure, when you use the Simulink Real-Time FPGA I/0 workflow, the
generated IP core now contains a unique timestamp. The IP Core Generation report
shows an IPCore Timestamp register that contains information about when the IP core
was created up to the minute time value. The code generator appends this information to
the bitstream file name, and then copies the file to the current working directory for
easier access.

By using the timestamp, you can match the packaged HDL IP core to the FPGA bitstream
that gets downloaded to the board. When you run the workflow, HDL Coder generates a
Simulink Real-Time FPGA I/0 interface model that contains the timestamp
information as part of the Setup block. When you build this model, the code generator
compares the timestamp with the FPGA bitstream file name that is used to program the
FPGA. If there is a match in the timestamp name, the FPGA no longer needs to be
reprogrammed, which significantly reduces the model build time.

Default system with External DDR3 Memory Access reference
design

You can use a new Default system with External DDR3 Memory Access
reference design when you specify Xilinx Zynq ZC706 evaluation kit as the
target platform.

You must have HDL Verifier and the HDL Coder Support Package for Xilinx Zynq
Platform.

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/specify-bidirectional-ports.html

IP Core Generation and Hardware Deployment

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2016.4
¢ Intel Quartus Prime 16.1

See Supported Third-Party Tools and Hardware.

HDL Coder support packages renamed
« The HDL Coder Support Package for Altera®FPGA Boards has been renamed to the
HDL Coder Support Package for Intel FPGA Boards.

* The HDL Coder Support Package for AlteraSoC Platform has been renamed to the
HDL Coder Support Package for Intel SoC Devices.

* The HDL Coder Support Package for Xilinx Zyng-7000 Platform has been renamed to
the HDL Coder Support Package for Xilinx Zynq Platform.

See also HDL Coder Supported Hardware.

4-17

https://www.mathworks.com/help/releases/R2017b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/gs/hdl-coder-supported-hardware.html

R2017a

Version: 3.10
New Features
Bug Fixes

Compatibility Considerations

R2017a

Model and Architecture Design

5-2

HDL Floating Point Operations Library: Easily find additional
and existing single-precision floating-point blocks supported
for HDL code generation

HDL Coder provides a HDL Floating Point Operations block library that consists of
Simulink blocks configured for HDL code generation with the native floating-point
support.

In R2017a, HDL Coder added native floating-point support for these blocks in the HDL
Floating Point Operations Library.

* Discrete FIR Filter with Fully Parallel as HDL Architecture

* Discrete-Time Integrator

* Discrete PID Controller

* Rounding Function

* Trigonometric Function with Function as cos + jsin

* Sign

¢ Math Function block with Function as:
* mod
* rem

See also HDL Floating Point Operations.

Floating-Point Latency Customization at Block-Level

For blocks that support code generation in native floating-point mode, you can now
specify custom block-level settings. By default, the blocks in your design inherit the native
floating-point settings that you specify in the Configuration Parameters dialog box. To
specify custom settings for these blocks, right-click the block and open HDL Code >
HDL Block Properties, and then select the Native Floating Point tab. Using custom
settings for the blocks, you can optimize your design implementation on the target FPGA
device for area and speed.

For most blocks, the Native Floating Point tab contains the HandleDenormals and
LatencyStrategy settings. If there are multipliers in your design, you can specify how

https://www.mathworks.com/help/releases/R2017a/hdlcoder/hdl-operations-1.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmml4t-1
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmwbnb-1

Model and Architecture Design

you want HDL Coder to implement the mantissa multiplication operation for individual

blocks by using the MantissaMultiplyStrategy setting. This figure shows the HDL Block
Properties dialog box for a Product block.

’ HDL Properties: Product == ﬁ
Im Mative Floating Point
Implementation Parameters
HandleDenormals [-::-FF -]
LatencyStrategy [Max w2]
MantissaMultiplyStrategy [FuIIMuItijier ']
[OK] [Cancel] [Help] [Apply]

Additional Block and System Object Support with Native
Floating Point

HDL Coder now supports these blocks and system objects with native floating point.
* All RAM blocks, which include:

* Single Port RAM

* Dual Port RAM

* Simple Dual Port RAM

* Dual Rate Dual port RAM
* Serializer1D and Deserializer1D

5-3

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmwcnl-1

R2017a

* hdl.RAM

See Also Operators and Simulink Blocks Supported for Native Floating-Point.

Custom reference model prefix specification

For module names or files that are generated for a model reference, you can now specify
a custom reference model prefix. Previously, HDL Coder prefixed the referenced model
with modelname .

To add a prefix for the referenced model, in the HDL Block Properties dialog box, for
ReferenceModelPrefix, specify the prefix as a text. When generating code, HDL Coder
applies this prefix to the names of generated HDL files for submodels, package names,
and HDL identifiers. By default, the prefix is the name of the top-level subsystem.

See also Model.

GenerateWebview parameter name changed to
HDLGenerateWebview

To include a model Web view in the HDL Code Generation report programmatically, you
now use the HDLGenerateWebview parameter. This parameter corresponds to the
Generate model Web view setting on the HDL Code Generation pane in the
Configuration Parameters dialog box. Previously, you used the GenerateWebview
parameter.

HDL Coder now distinguishes the HDLGenerateWebview parameter from the
GenerateWebview parameter that Embedded Coder® uses.

Compatibility Considerations

In R2017a, if you run a previously saved MATLAB script that used hdlset param or
makehdl with the GenerateWebview parameter, HDL Coder generates an error. To fix
the error, change the parameter name to HDLGenerateWebview, and then run the script.

If you load a pre-R2017a model that was saved with the GenerateWebview parameter
enabled, HDL Coder ignores the parameter setting. To generate the model Web view,
enable the HDLGenerateWebview parameter.

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/model.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlgeneratewebview.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/makehdl.html

Model and Architecture Design

Comments in HDL code for Simulink blocks with text
annotations

If you add text annotations with connecting lines to Simulink blocks, HDL Coder
generates comments in the HDL code for the blocks. The comments make it easier to map
your algorithm in Simulink to the generated code.

Previously, the comments were grouped together on top of the process declaration
statement in Verilog or the entity declaration statement in VHDL. For example, consider
this Simulink model that performs a multiply-accumulate operation.

This block adds the product of the
number to an accumulator

Compute product of the numbers. This is the
initial step in a multiply-accumulate operation

1 P+
Add Out
(2) P
x>
b >
Product

This table shows the generated Verilog code from the model for R2017a and earlier
releases.

3-5

R2017a

R2017a Releases before R2017a
module MAC module MAC
(a, (
b, a,
c, b,
Out); c,
Out
)
input [15:0] a; // uintl6
input [15:0] b; // uintl6 input [15:0] a; // uintl6
input [15:0] c; // uintl6 input [15:0] b; // uintl6
output [31:0] Out; // uint32 input [15:0] c; // uintl6
output [31:0] Out; // uint:
wire [31:0] Product outl; // uint32
wire [31:0] Add 1; // ufix32 wire [31:0] Product outl; /,
wire [31:0] Add outl; // uint32 wire [31:0] Add_1; // ufix3:

// Initial product computation
assign Product outl = b * c;

// Adds product of the numbers to an accumulator
assign Add 1 = {16'b0, a};
assign Add outl = Add 1 + Product outl;

assign Out = Add outl;

endmodule //

MAC

wire [31:0] Add outl; // uir

// Adds the product of the ni
//
// Initial product computatic

assign Product outl = b * c;

assign Add 1 = {16'b0, a};
assign Add outl = Add 1 + Prc

assign Out = Add outl;

endmodule // MAC

See also Generate Code with Annotations or Comments.

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/annotating-generated-code-with-comments-and-requirements.html

Block Enhancements

Block Enhancements

For Each Subsystems: Reduce block replication and improve
code reuse in HDL-targeted designs

HDL Coder supports the For Each Subsystem block for code generation. The block:

* Supports vector processing that enables you to process individual elements or
subarrays of an input signal simultaneously. You no longer need to split the signals or
create and connect replicas of a subsystem to model the same algorithm.

* Improves readability of code by using a for-generate loop in the generated HDL
code that iterates through each element of the input signal. The elements can be
scalars or subarrays of the input signal. The for-generate loop is cleaner and reduces
the number of lines of code, which can otherwise result in hundreds of lines of code
for large vector signals.

» Supports HDL code generation for all data types, Simulink blocks, and predefined and
user-defined system objects.

* Supports optimizations on and inside the block, such as resource sharing and
pipelining. The parallel processing capability of the For Each Subsystem block
combined with the optimizations that you specify provides high performance on the
target FPGA device.

The For Each Subsystem block is available as part of the Ports & Subsystems block
library in HDL Coder.

For an example that shows how to generate HDL code for the For Each Subsystem, see
Generate HDL Code for Blocks Inside For Each Subsystem.

HDL Optimized Filters: Model and generate optimized
hardware implementations for FIR filters (requires DSP
System Toolbox)

This release introduces the Discrete FIR Filter HDL Optimized block and
dsp.HDLFIRFilter System object, which model FIR filter structures optimized for HDL
code generation. The filter is sample-based. Control signals are provided for flow control.
Resource sharing options allow tradeoffs between throughput and resource utilization.
The block and object provide cycle-accurate models of the generated HDL code, including
clock rates and latency.

5-7

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlfirfilter-class.html

R2017a

HDL Channelizer Block and System Object: Isolate
narrowband channels from a wideband signal and generate
HDL with efficient multiplier usage (requires DSP System
Toolbox)

This release introduces the Channelizer HDL Optimized block and
dsp.HDLChannelizer System object, which model a polyphase filter bank and fast
Fourier transform and support HDL code generation. The algorithm provides an efficient
hardware implementation and hardware-friendly control signals. You can achieve giga-
sample-per-second (GSPS) throughput with vector input.

Gigasample per Second (GSPS) Signal Processing: Increase
throughput of FIR decimation algorithms by using frame input

You can now generate HDL code from the FIR Decimation block when the block uses
frame input. The block accepts a column vector of input data. Each element of the vector
represents a sample in time. The coder implements a parallel HDL architecture for the
filter. This capability increases throughput in hardware designs. To configure the block for
frame input:

Connect a column vector signal to the FIR Decimation block input port.
Specify Input processing as Columns as channels (frame based).

Set Rate options to Enforce single-rate processing.

Right-click the block and open HDL Code > HDL Block Properties. Set the
Architecture to Frame Based. The block implements a parallel HDL architecture.
See Frame-Based Architecture.

A W N =

Enhancements to MATLAB Function block support in
synchronous subsystems

For a MATLAB Function block inside a synchronous subsystem, you can now use the
combinational and sequential logic portions in one MATLAB function. Previously, you
created two separate MATLAB Function blocks, one for the combinational logic, and the
other for the sequential logic.

To use the combinational and sequential logic portions inside one MATLAB Function
block, in the Ports and Data Manager dialog box, select the Allow direct feedthrough

https://www.mathworks.com/help/releases/R2017a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlchannelizer-class.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/configuring-hdl-filter-architectures.html#bvd5s3h

Block Enhancements

check box. The output function can then depend on inputs and persistent variables. For
example, you can now use this MATLAB function that has two outputs, with one output
depending on the input, and the other output depending on a persistent variable.

function [yl, y2] = fcn(u, v)

persistent p;
if isempty(p)

p = uint8(0);
end
yl = p;
y2 = v;
p=u;

Using the MATLAB Function block inside a synchronous subsystem generates cleaner
HDL code and uses fewer hardware resources. See also State Control.

HDL Coder support for blocks that support bus signal treated
as vector

HDL Coder can now generate code for blocks that support the Bus signal treated as
vector setting. These blocks are not bus-capable, but they can accept a vector signal.
Previously, to generate HDL code for these blocks, you used a Bus to Vector block to
convert the bus signals to vectors for input to the block.

When you use these blocks with buses, ensure that:

* Input to the blocks is a virtual bus.
* Constituent signals of the bus have the same attributes.

* Bus signal treated as vector is set to none or warning. This setting is available in
the Diagnostics > Connectivity pane in the Configuration Parameters dialog box.
See also Bus signal treated as vector (Simulink).

HDL code generation support for Bus Assignment block with
nonvirtual bus
In your Simulink model, you can now use Bus Assignment blocks with nonvirtual bus

signals for HDL code generation. Previously, when you used Bus Assignment blocks, to
generate HDL code, you converted the nonvirtual buses to virtual buses.

5-9

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/statecontrol.html
https://www.mathworks.com/help/releases/R2017a/simulink/gui/bus-signal-treated-as-vector.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/busassignment.html

R2017a

5-10

Additional HDL Coder bus support

HDL Coder now supports the:

* Ground block with bus input
* Constant block with a value of ® and bus as Output data type

HDL code generation support for System Objects with
enumeration types

You can now generate HDL code for System objects with enumeration types:

* From MATLAB, by using the HDL Coder app or MATLAB to HDL Workflow Advisor
* From Simulink, for System objects that are used with MATLAB System or MATLAB
Function blocks

You can also use array of enumeration types and enumeration types as fields in Simulink
bus data types for HDL code generation.

Code Generation and Verification

Code Generation and Verification

Native Floating-Point Testbench: Generate SystemVerilog DPI,
cosimulation, and FPGA-in-the-loop test benches with single-
precision data types (requires HDL Verifier)

Before generating code, if you enable the native floating-point support, you can now
verify the HDL implementation of your design by using any of these testbenches:

» SystemVerilog DPI test bench
* Cosimulation
* FPGA-in-the-loop

See also Verify the Generated Code from Native Floating-Point.

More fixed-size variable information in Fixed-Point Conversion
step of HDL Coder App

In R2017a, when you convert floating-point MATLAB code to fixed-point MATLAB code,
the target interface step provides information about the converted fixed-point code.
Previously, in the target interface step, the app displayed the original floating-point
MATLAB code.

In the Fixed-Point Conversion step, after fixed-point conversion, if you place your
cursor over a converted variable or expression, the app displays the fixed-point type
information.

v = fi(zeros(size(x)), 1, 1&, 14,
for i=l:lenath (=1 M
vi(i TYPE FIMATH
z {1 +
z (2| Type: 1x256 embedded.fi)

(]

=l Signedness: Signed

B Word Length: 16
Function Fraction Length: 14

5-11

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/verifying-the-generated-hdl-from-native-floating-point.html

R2017a

5-12

For a variable with a fixed-point type in the original code, when you place your cursor
over the variable before or after conversion, the app displays the fixed-point type
information.

Comments in generated HDL code for MATLAB System blocks

In R2017a, if you have comments in your MATLAB System block, HDL Coder passes these
comments to the generated HDL code. These comments make it easier to map your
algorithm in MATLAB to the generated HDL code.

Global reset signals minimization in generated HDL Code

In R2017a, you can use the Minimize global resets setting to minimize or remove global
reset signals in the generated HDL code. To specify this setting, in the Configuration
Parameters dialog box, on the HDL Code Generation > Global Settings > Ports tab,
select the Minimize global resets check box.

See also MinimizeGlobalResets

HDL code generation support for DUT subsystem with custom
HDL properties

For any DUT subsystem, you can now specify custom HDL block property settings and
generate HDL code. To specify these custom settings, right-click the subsystem and select
HDL Code > HDL Block Properties.

Previously, to generate HDL code for any DUT subsystem, the subsystem used the default
HDL block property settings.

Changes in HDL Code Generation Panel in Configuration
Parameters Dialog Box

Parameters Added

* Minimize global resets in the Global Settings > Ports tab
* Inthe Test Bench pane Test Bench Generation Output section:

* SystemVerilog DPI test bench

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/minimizeglobalresets.html

Code Generation and Verification

* HDL code coverage check box
Parameters Moved

These parameters moved from the Target and Optimizations > General tab to the
Global Settings > Ports tab:

* Minimize clock enables
* Use Trigger as clock

Parameters Removed

Cosimulation model for use with:

Syntax Highlighting of Generated HDL Code in HTML Report

In R2017a, enhancements in syntax highlighting greatly improve the readability of the
generated HDL code. To see the syntax highlighting, before generating HDL code, in the
Configuration Parameters dialog box, on the HDL Code Generation pane, select the
Generate traceability report check box.

Previously, the Code Generation report used two highlighting colors: blue for code and
green for comments. With this change, HDL-specific keywords are highlighted in blue and
the rest of the HDL code is in black. Comments in the code are still highlighted in green.

5-13

R2017a

Speed and Area Optimizations

Improvements to delay balancing in multirate regions

If you have local multirate regions in your design or introduce them through clock-rate
pipelining, HDL Coder improves delay optimization in these regions by reducing
excessive matching delays. This optimization results in area, timing, and power-efficient
designs, particularly in cases with significant rate differences.

Functionality Being Removed or Changed

Functionalit |Result Use Instead Compatibility
y Considerations
MaxComputa |Still runs. The code |Oversampling Replace all instances of
tionLatenc |generator displays a |with clock-rate MaxComputationLatency
y warning. pipelining. with Oversampling.
MaxOversam |Still runs. The code |Oversampling Replace all instances of
pling generator displays a |with clock-rate MaxOversampling with
warning. pipelining. Oversampling.

5-14

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

Data Type Support for AXI4 Slave: Map floating-point signals
and vector signals to AXI4 slave interfaces in IP core
generation

When using the IP Core Generation workflow, in the Target platform interface
table, you can map single and vector signals at the DUT ports to AXI4 or AXI4-Lite
interfaces.

The workflow for vector signals includes an IP Core Generation report that displays:

» Address offsets of AXI4 interface accessible registers generated for each input, output,
and strobe signal in the Register Address Mapping section. The additional strobe
register for each input and output vector data maintains the synchronization across
multiple, sequential AXI4 read and write operations. For each input and output vector
signal, this section displays the size of the vector, and the starting and ending address
offsets.

* A Vector Data Read/Write with Strobe Synchronization subsection in the IP Core
User’s Guide section that shows how HDL Coder handles vector data and
synchronizes read and write operations across the AXI4 interface.

See also Custom IP Core Generation.

When you use signals that have a single data type, specify the floating-point library. In the
Configuration Parameters dialog box, on the HDL Code Generation > Global Settings
> Floating Point Target tab, for Library, choose Altera Megafunctions (Altera
FP Functions), Altera Megafunction (ALTFP), Native Floating Point, or
Xilinx LogiCORE.

Incremental Vivado Synthesis: Enable IP caching for faster
synthesis of Xilinx Vivado reference designs

When creating a Xilinx Vivado project with the IP Core Generation workflow, you can
enable IP caching to speed up synthesis of the reference design. To accelerate reference
design synthesis when using the workflow for the second time:

1 Before running the Create Project task the first time, select the Enable IP caching
check box. When running this task, the workflow creates an empty IP cache folder.

5-15

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/custom-ip-core-generation.html

R2017a

5-16

2 Run the Build FPGA Bitstream task to populate the IP cache folder with synthesis
logs and design checkpoint files generated for the HDL IP core and other IP blocks in
the reference design.

3 To accelerate reference design synthesis, run the Build FPGA Bitstream task a
second time. Make sure that you use the same hdl prj folder as the first time you
ran the workflow.

The Xilinx Vivado tool then checks and reuses the design checkpoint files in the IP
cache, which speeds up reference design synthesis.

If you are using your own custom reference design, you can accelerate reference design
synthesis when running through the workflow the first time.

1 In the IP cache folder, delete the IP core files generated for the DUT. Extract the
remaining files in this folder into a zip file, name it ipcache. zip, and save the file in
the reference design folder.

2 Make sure that the IPCacheZipFile property of the hdlcoder.ReferenceDesign
class points to the ipcache. zip folder.

In the workflow, HDL Coder uses the files in this IP cache, which speeds up reference
design synthesis. For more information, see IP Caching for Faster Reference Design
Synthesis.

IP core generation support for Altera Megafunction

When mapping your floating-point algorithm in Simulink to Altera Megafunction floating-
point IP, you can now generate an HDL IP core with the IP Core Generation workflow.
To use this workflow, map your Simulink model to Altera Megafunctions (Altera
FP Functions) or Altera Megafunctions (ALTFP) floating-point libraries.

To specify the floating-point library, in the Configuration Parameters dialog box, on the
HDL Code Generation > Global Settings > Floating Point Target tab, for Library,
choose Altera Megafunctions (Altera FP Functions) orAltera
Megafunctions (ALTFP).

Custom IP repository specification

With the IP Core Generation workflow, by using the addIPRepository method of
the hdlcoder.ReferenceDesign class, you can add your own custom IP repository to
your custom reference design.

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/use-ip-caching-for-faster-reference-design-synthesis.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/use-ip-caching-for-faster-reference-design-synthesis.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlcoder.referencedesign.addiprepository.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlcoder.referencedesign-class.html

IP Core Generation and Hardware Deployment

Previously, to add IP modules, you used the CustomFiles property of the
hdlcoder.ReferenceDesign class. Starting in R2017a, you can still use the
CustomFiles property, but it is recommended to use the addIPRepository method
instead. Using this method, you can include IP from a shared repository folder, or include
multiple repository folders in your reference design.

See also Define and Add IP Repository to Custom Reference Design.

Xilinx Virtex-2 FPGA board support being removed

HDL Coder no longer supports the Xilinx ISE 10.1 synthesis tool and target platforms that
use the Xilinx Virtex-2 FPGA board. For example, Speedgoat 10314 and older
Speedgoat boards use Xilinx Virtex-2 FPGA, and are no longer supported with the
Simulink Real-Time FPGA I/0 workflow.

Compatibility Considerations

If you load a pre-R2017a model that was saved with a target platform that used the Xilinx
Virtex-2 FPGA, and then open the HDL Workflow Advisor, HDL Coder generates a
warning. To avoid this warning, use a newer FPGA board and synthesis tool. With the
Simulink Real-Time FPGA I/0 workflow, use the Speedgoat I0321 or a later
Speedgoat board.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2016.2
o Altera Quartus II 16.0

See Supported Third-Party Tools and Hardware.

5-17

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/define-and-add-ip-respository-to-custom-reference-design.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/gs/language-and-tool-version-support.html

R2016b

Version: 3.9
New Features
Bug Fixes

Compatibility Considerations

R2016b

Model and Architecture Design

6-2

Native Floating Point: Generate target-independent
synthesizable RTL from single-precision floating-point models

In R2016D, if you use single-precision data types in your Simulink model, HDL Coder can
generate target-independent HDL code without converting to fixed point. You can deploy
the generated code on any generic ASIC or FPGA platform.

In your Simulink model:

* You can have a combination of integer, fixed-point, and floating-point operations. By
using Data Type Conversion blocks, you can perform conversions between single-
precision and fixed-point data types.

* Ifyour design does not use denormal numbers, you can specify that HDL Coder does
not have to add the additional logic to check for denormal numbers, which improves
area on the target hardware platform.

» By using the latency strategy setting, customize the latency of the native floating-point
library.

The generated code:

* Complies with the IEEE-754 standard of floating-point arithmetic.

* Does not require floating-point processing units or hard floating-point DSP blocks on
the target ASIC or FPGA.

When you verify the generated code, use HDL testbench to check for floating-point
tolerance based on relative errororulp error, and to ensure accuracy of your
design with Simulink.

To specify native floating-point support, in the Configuration Parameters dialog box, on
the HDL Code Generation > Global Settings > Floating Point Target tab, for
Library, specify NATIVE FLOATING POINT.

For more information, see Native Floating Point.

https://www.mathworks.com/help/releases/R2016b/hdlcoder/native-floating-point.html

Model and Architecture Design

HDL Coder support for tunable parameters in data dictionary

Starting with R2016b, you can manage and define tunable parameters in a Simulink data
dictionary for HDL code generation.

To learn more about data dictionary, see What Is a Data Dictionary?.

Generic ports for DUT mask parameters

In R2016b, HDL Coder supports mask parameters at the DUT as generic ports for HDL
code generation.

Simulink diagnostic suppressor option

The Diagnostic Viewer in Simulink now includes an option to suppress certain
diagnostics. You can suppress warnings for specific objects in your model. In the
Diagnostic Viewer, click the Suppress button next to the warning to suppress the
warning from the specified source. You can restore the warning from the source by
clicking Restore.

6-3

https://www.mathworks.com/help/releases/R2016b/simulink/ug/what-is-a-data-dictionary.html

R2016b

i

Diagnostic Viewer EI

vvv¥v|ﬁ_j—f,v|q T @v (‘EJ
myModel

+* Simulation @ 2

14:13 PM Elapsed: 0453 sec

Saturation cccurred. This originated from "myModel/Data Type Conwersion'.

|* Suppressions

L T . Restore

Component:Simulink | Category:Blockwarning

ed. This originated from "myMode=l/Datz Tvpe

-
Suppress future instances of this diagnostic from this source. Suppress

Component:Simulink | Category Blockwarming

You can also control the suppressions from the command line. To view the existing
suppressions on the model, use the Simulink.getSuppressedDiagnostics function.

Suppressed Simulink.getSuppressedDiagnostics('myModel")

Suppressed
SuppressedDiagnostic with properties:

Source: 'myModel/Data Type Conversion'
Id: 'SimulinkFixedPoint:util:Saturationoccurred'
LastModifiedBy: ''
Comments: "'
LastModified: '2016-Apr-26 10:31:22'

Suppress diagnostics by using the Simulink.suppressDiagnostic function.

Simulink.suppressDiagnostic('myModel/Data Type Conversionl', 'SimulinkFixedPoint:util:Overflowoccurred")
Suppressed

6-4

Model and Architecture Design

Suppressed =
1x2 SuppressedDiagnostic array with properties:

Source

Id
LastModifiedBy
Comments
LastModified

Restore a diagnostic by using the Simulink. restoreDiagnostic function.

Simulink.restoreDiagnostic('myModel/Data Type Conversionl', 'SimulinkFixedPoint:util:Overflowoccurred")

R2016b

Block Enhancements

6-6

Gigasample Per Second (GSPS) Signal Processing: Increase
throughput of HDL code generated from Discrete FIR Filter
and Integer Delay blocks by using frame input

You can now generate HDL code from the Discrete FIR Filter block when using frame
input. Set Input processing to Columns as channels (frame based). Then, right-
click the block and open HDL Code > HDL Block Properties. Set the Architecture to
Frame Based. The block accepts vector input data, where each element of the vector
represents a sample in time. The coder implements a parallel HDL architecture for the
filter. See Discrete FIR Filter.

The Delay block also supports HDL code generation with frame input data. Set Input
processing to Columns as channels (frame based). The block accepts vector
input data, where each element of the vector represents a sample in time.

This capability increases throughput in hardware designs.

Bit-reversed input order for HDL-optimized FFT

For vector input data, the HDL-optimized FFT now supports bit-reversed input with
natural order output. For scalar input data, you can select any input order with any
output order. The default is natural order input with bit-reversed output.

This change affects these blocks and System objects:

« FFT HDL Optimized
« IFFT HDL Optimized
« dsp.HDLFFT

« dsp.HDLIFFT

High-throughput polyphase filter bank for HDL example

The Generate HDL Code for High Throughput Signal Processing example shows how to
design a Polyphase Filter Bank to achieve gigasample per second (GSPS) data rates in the
generated HDL implementation. The model uses the FFT HDL Optimized block with
vector input.

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/examples/generate-hdl-code-for-high-throughput-signal-processing.html

Block Enhancements

HDL support for reset port on Discrete FIR Filter

You can now generate HDL code from the Discrete FIR Filter block when you configure
the block to have an external reset port.

HDL Coder support for array of buses
In your Simulink model, you can now use an array of buses for HDL code generation.

When your Simulink model uses an array of buses, in the generated code, HDL Coder
expands the array of buses into the corresponding scalars. For more information, see
Generating HDL Code for Subsystems with Array of Buses.

To learn more about array of buses and supported blocks, see Combine Buses into an
Array of Buses.

Synchronous behavior for Resettable Subsystem with State
Control block

You can specify synchronous hardware behavior and generate cleaner HDL code for a
Resettable Subsystem with the State Control block. If you specify synchronous hardware
behavior, the HDL code uses fewer hardware resources, because HDL Coder does not
generate bypass registers.

The Resettable Synchronous Subsystem block is now available as part of the HDL
Subsystems block library in HDL Coder. The Resettable Synchronous Subsystem block
uses the synchronous hardware behavior of the State Control block with the Resettable
Subsystem block.

For an example that shows how to use the Resettable Synchronous Subsystem block, see
Resettable Subsystem Support in HDL Coder™.

HDL optimized Sine and Cosine blocks

In the Lookup Tables block library in HDL Coder, the Sine HDL Optimized and Cosine
HDL Optimized blocks replace the Sine and Cosine blocks respectively. You can still use
the Sine and Cosine blocks from the Lookup Tables block library in Simulink for HDL code
generation.

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/generate-hdl-code-for-subsystems-with-array-of-buses.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/combining-buses-into-an-array-of-buses.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/combining-buses-into-an-array-of-buses.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/resettablesynchronoussubsystem.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/resettable-subsystem-support-in-hdl-coder.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/sinehdloptimized.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/cosinehdloptimized.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/cosinehdloptimized.html

R2016b

6-8

The new blocks are optimized for area and speed because you can configure them with
Lookup Tables that have an exact power of two as its number of elements. In the
generated code, the Lookup Tables precede a register without reset so that they map
efficiently to RAM blocks on the target hardware platform.

Simpler method to call System objects

You can now call a System object with arguments, as if it were a function, instead of using
the step method to perform the operation defined by the object. The step method
continues to work. This capability improves the readability of scripts and functions that
use many different System objects.

For example, if you create a hdl.RAM System object named ramsingle, and then call the
System object as a function with that name:

ramsingle = hdl.RAM('RAMType', 'Single port',
'WriteOutputValue', '0Old data');
ramsingle(x)

The equivalent operation with the step method is:

ramsingle = hdl.RAM('RAMType', 'Single port',
'WriteOutputValue', '0ld data');
step(ramsingle,x)

When the step method has the System object as its only argument, the function
equivalent has no arguments. You must call this function with empty parentheses. For
example, step(sysobj) and sysobj () perform equivalent operations.

Code Generation and Verification

Code Generation and Verification

Logic Analyzer: Visualize, measure, and analyze transitions
and states over time for Simulink signals

If you have DSP System Toolbox, by using the Logic Analyzer visualization tool, you can
view the transitions of signals. Use the Logic Analyzer to:

* Debug and analyze models.

* Trace and correlate many signals simultaneously.

* Detect and analyze timing violations.

* Trace system execution.

HDL Coder support for creating and attaching configuration
sets

Starting in R2016b, HDL Coder supports configuration set management workflow on the
Model Explorer, or from the command line. You can create an active configuration set
with the preferred HDL Configuration Parameters on a standard Simulink model, and
export and copy this configuration set for Simulink models that you create.

Previously, you created a configuration set for each Simulink model, and ensured that the
configuration set had similar contents for all your Simulink models.

VHDL Architecture Name available in Configuration
Parameters dialog box

You can now specify the VHDL architecture name in the Configuration Parameters
dialog box.

* Commonly Used Parameters tab: HDL Code Generation > Global Settings >
General tab.

* All Parameters tab: Search for VHDLArchitectureName.

RAM with generic ports enhancement

Starting in R2016b, when generating code for RAM blocks in your Simulink model, HDL
Coder adds parameters in Verilog and generics in VHDL for the RAM address and data

6-9

R2016b

6-10

widths. This means that HDL Coder generates only one generic RAM file for RAM blocks
that differ in address widths, data widths, or both.

Stateflow comments generated as comments in HDL

When your Simulink model contains a Stateflow Chart that uses comments, HDL Coder
generates comments in the HDL code. For example, consider this Moore Stateflow Chart
in your Simulink model.

nit
% This is comment 1

outd = fi(0, 1, 8, 0%
' in0 = 0]
10 < 1] S
S
™
R

out
% This is comment 2
outD = fi(10, 1, &, 0);

When you generate Verilog code from the model, HDL Coder displays the comments in
the Stateflow Chart inline beside the corresponding Stateflow object.

Code Generation and Verification

R2016b

R2016a

always @(is AL Chart) begin
outd 1 = 8'sbh00OOOO00;
case (is AL Chart)
is AL Chart IN init :
begin
// This is comment 1
out® 1 = 8'sbh0OOOO0O00;
end
default :
begin
// This is comment 2
out® 1 = 8'sb000O1010;
end
endcase
end

always @(is AL Chart) begin
outd 1 = 8'sb00OOOOOO;
case (is AL Chart)
is AL Chart IN init :
begin
out0® 1
end
default :
begin
out0® 1
end
endcase
end

8'sb0000000C

8'sb0000101¢

Tolerance check for floating-point libraries

When mapping your Simulink model to floating-point libraries, you can specify the
tolerance check when you generate the testbench.

For operators such as trigonometric sine and cosine, there can be small rounding errors
or numeric differences with the correct rounding range of values that the IEEE-754
standard specifies. To check for numerical accuracy in the generated testbench by using
HDL testbench, specify the floating-point tolerance check.

You can perform the floating-point tolerance check based on the relative error or
ulp error.

* relative error: Relative error is the rounding error when approximating a nonzero
real number. By default, the tolerance value is 1e-07. You can specify a tolerance
value less than or equal to 1e-07.

* ulp error: ulp (unit in the last place) is the gap between two floating-point numbers
nearest x, even if x is one of the numbers. By default, the tolerance value is zero. You
can specify a tolerance value greater than or equal to zero.

To check for floating-point tolerance, in the Configuration Parameters dialog box, on the
Configuration section of HDL Code Generation > Test Bench tab, for Floating point
tolerance check based on, specify relative errororulp error, and enter the
Tolerance Value.

6-11

R2016b

6-12

For more information, see FPToleranceValue and FPToleranceStrategy.

Code Generation Report enhancements
Delay Balancing Report

HDL Coder now displays the path delay balancing information in the Delay Balancing
section of the Optimization Report. Previously, the Optimization Report displayed the
delay balancing information in the Path Delay Summary subsection of the Streaming and
Sharing report.

See also Optimization Report.
Shift Operators in Resource Report

The High-level Resource Report Summary shows the number of Static Shift operators and
Dynamic Shift operators. The Detailed Report shows the number of static left shift, static
right shift, dynamic left shift, and dynamic right shift operators.

Comprehensive documentation for HDL coding standard rules

The HDL Coder documentation provides a comprehensive list of coding standard rules
with recommendations for each of the rules. The coding standard rules fall under three
categories:

* Basic Coding Practices: Checks for conformance of modeling constructs with general
naming conventions and basic coding guidelines. See Basic Coding Practices.

* RTL Description Techniques: Checks for conformance with RTL description rules and
guidelines. See RTL Description Techniques.

* RTL Design Methodology Guidelines: Includes guidelines for creating and using
function libraries, and test facilitation design. See RTL Design Methodology
Guidelines.

To learn more about HDL coding standards, see HDL Coding Standards and HDL Coding
Standard Report.

More discoverable logs and reports for fixed-point conversion
in HDL Coder app

Previously, in the HDL Workflow Advisor Fixed-Point Conversion task, the HDL Coder
app displayed logs and report links for range analysis, fixed-point conversion, and

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/fptolerancevalue.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/fptolerancestrategy.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/optimization-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/basic-coding-practices.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/rtl-description-techniques.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/rtl-design-methodology-guidelines.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/rtl-design-methodology-guidelines.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standards.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standard-report.html

Code Generation and Verification

verification on separate tabs that were placed on top of each other. To see a hidden tab,
you opened a menu and selected the tab.

YWariables | Function Replacements | Werification Output | =

L2 23
FEF
FEF
FEE
HE
FEF

Analyzing the design 'mlhdlc sfir’ Simulation Output

Bnalyzing the test bench{e=s) 'mlhd Type Validation Output

Begin Floating Point Simmlation v | Verfication Outout
erfication Cutpu

Floating Point Simumlation Complete
Begin Fixed Point Simulation @ mlhdle sfir tb
Beginning fixed point error analysis for 'mlhdlc sfir' ###%

In R2016b, the app displays logs and report links for range analysis and fixed-point
conversion on the Qutput tab. It displays logs and report links for verification on the
Verification Output tab. These tabs are next to each other so that you can more easily
find them.

Wariables | Function Replacerments | Output | Werification Output

Verification Cutput (4/25/16 4:48 EM)

#%## Analyzing the design '"mlhdlc sfir’

#%#% Bnalvzing the test bench(es) 'mlhdlc sfir tb'

#%## Begin Floating Point Simulation

$%#% Floating Point Simulation Completed in 2.1091 sec(s)

##% Begin Fixed Point Simulation : mlhdle sfir th

#%## Beginning fixed point error analysis for "mlhdlc sfir' ###F

Enhancements in generated model for Lookup Tables

In R2016Db, you can flatten masked subsystems and library blocks that contain Lookup
Tables to enable further optimizations and file reduction.

6-13

R2016b

Target and Optimizations pane in HDL Coder Configuration
Parameters

In the Configuration Parameters dialog box, on the HDL Code Generation pane, HDL
Coder has a new Target and Optimizations pane where you can specify the target
device and optimization settings.

» Parameters that were previously in the General, Pipelining, and Resource Sharing
sections of the Optimization tab of Global Settings pane have moved to a General
tab, a Pipelining tab, and a Resource Sharing tab respectively in the
Optimizations section of Target and Optimizations pane.

* Inthe Target and Optimizations pane, you now specify the target device settings in
the Tool and Device section and the Target Frequency in the Objectives section
respectively.

For more information, see HDL Code Generation Pane: Target and Optimizations.

Link to Code Generation Report after HDL code generation

In the Configuration Parameters dialog box, on the HDL Code Generation pane, when
you select Generate resource utilization report and generate HDL code, HDL Coder
displays a link to the Code Generation report. If you happen to close the report after code
generation, you can click the link to open the report from the MATLAB Command Window.

6-14

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-code-generation-pane-target-and-optimizations.html

Speed and Area Optimizations

Speed and Area Optimizations

Adaptive Pipelining: Specify synthesis tool and target clock
frequency for automatic pipeline insertion and balancing

You can now specify adaptive pipelining for your Simulink model, or for an individual
subsystem in your Simulink model, to improve area and timing on the target FPGA device.
To insert adaptive pipelines, specify the synthesis tool and the target frequency. HDL
Coder inserts the required number of pipelines for potential area and timing
improvements for these blocks:

* Lookup Table

* Product, Gain, and Multiply-Add

* Rate Transition and Downsample

You can enable adaptive pipelining by using the AdaptivePipelining property from the
command line, or by using the AdaptivePipelining HDL block property for the
Subsystem. See also Adaptive Pipelining.

HDL Coder displays a report that shows the adaptive pipelining status and whether HDL
Coder successfully inserted pipeline registers. For more information, see Optimization
Report.

Clock-rate pipelining enhancements
Subsystem level control of clock-rate pipelining

You can now specify clock-rate pipelining for individual subsystems in your Simulink
model. With this optimization, you can selectively apply clock-rate pipelining to
subsystems in your model design that are on the critical path, and improve timing.

To disable clock-rate pipelining for an individual subsystem, in HDL Block Properties for
the subsystem, set ClockRatePipelining to off.

To learn more about the HDL block property, see ClockRatePipelining.

6-15

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/adaptivepipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/adaptive-pipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/optimization-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/optimization-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/block-implementation-parameters.html#bveex_4-1

R2016b

6-16

Optimization of Downsample block with nonzero offset

In R2016b, when you have a Downsample block with a nonzero Sample offset at the
boundary of a clock-rate pipelining region, HDL Coder does not introduce the additional
latency or generate a Rate Transition block. This optimization improves timing and area.

For more information, see Clock-Rate Pipelining.

Resource sharing enhancements
Sharing of multipliers with different word-lengths

HDL Coder now shares Product blocks and Gain blocks in your Simulink model that have
different word-lengths. This optimization shares more multipliers, which saves area on
the target platform.

To share multipliers that have different word-lengths, in the Configuration Parameters
dialog box, on the HDL Code Generation > Target and Optimizations > Resource
Sharing tab, specify the Multiplier promotion threshold. The Multiplier promotion
threshold is the maximum word-length by which HDL Coder promotes a multiplier for
sharing with other multipliers.

Previously, for successful resource sharing, you used Product blocks or Gain blocks with
the same word-length.

See also MultiplierPromotionThreshold and Resource Sharing.
Sharing of floating-point IP

HDL Coder now shares floating-point IP blocks in the target hardware based on the
SharingFactor that you specify. This optimization saves area on the target hardware by
sharing more floating-point IP blocks.

If you do not want to share floating-point IP blocks, in the Configuration Parameters
dialog box, on the Resource Sharing tab, clear Floating-point IPs.

See also ShareFloatingPointIP.

Delay balancing failures reported as errors

Starting in R2016b, if delay balancing is unsuccessful, HDL Coder generates an error. To
see the block or subsystem in your Simulink model that caused delay balancing to fail, in

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/multiplierpromotionthreshold.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/sharefloatingpointip.html

Speed and Area Optimizations

the Delay Balancing section of the Optimization report, click the link to that block or
subsystem.

Compatibility Considerations

Previously, HDL Coder reported delay balancing failures as warnings. Now, if you load a
pre-R2016b model for which delay balancing was unsuccessful, HDL Coder generates an
error.

To learn more about possible reasons for delay balancing to fail, see Delay Balancing.

Optimization of Delay blocks with nonzero initial condition

In the generated code, HDL Coder now replaces a Delay block that has nonzero initial
condition in your Simulink model with a Delay block that has zero initial condition and
some additional logic. With this replacement, optimizations such as sharing, distributed
pipelining, and clock-rate pipelining can work more effectively, and prevent an assertion
from being triggered in the validation model.

To disable this optimization, in the Configuration Parameters dialog box, on the HDL
Code Generation > Target and Optimizations > General tab, clear Transform non
zero initial value delay.

For more information, see TransformNonZeroInitDelay.

Initialization script specification for Delay blocks without
reset

Starting with R2016b, to initialize the registers, you can use the no-reset registers
initialization setting to specify Generate an external script, Do not
initialize, or Generate initialization inside module. When you select
Generate initialization inside module, in Verilog, HDL Coder initializes the
registers by using an initial block in each module. In VHDL, HDL Coder initializes the
registers as part of the signal declaration statements.

Previously, if you had Delay blocks in your Simulink model with ResetType set to None,

HDL Coder generated an external script to initialize the Delay blocks for ModelSim®
simulation.

6-17

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/delay-balancing.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/transformnonzeroinitdelay.html

R2016b

The no-reset registers initialization setting is available in the Configuration

Parameters dialog box, on the HDL Code Generation > Global Settings > Coding
style tab.

To learn more, see NoResetInitializationMode.

6-18

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/noresetinitializationmode.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

AXl4-Stream Video Interface: Generate HDL code with the
AXl4-Stream Video interface by using the IP core generation
workflow

In R2016b, when your synthesis tool is Xilinx Vivado, HDL Coder can generate an IP core
with an AXI4-Stream Video interface for your video algorithm. To generate an IP core,
model your video algorithm by using the streaming pixel protocol. Then, in the Target
platform interface table map the pixel data and pixel control bus ports to the AXI4-
Stream Video Master or AXI4-Stream Video Slave interfaces.

You can integrate the generated IP core into the Default video system reference
design or your own custom video reference design.

For more information, see Model Design for AX14-Stream Video Interface Generation.

Customizable FPGA floating-point target configuration

You can customize the floating-point target IP settings by using the floating-point target
configuration that you specify for the library. When you customize the IP settings, you can
choose from different combinations of IP names and data types, and specify the latency or
the target frequency that you want the IP to achieve. You can customize the IP settings
from:

* Floating Point Target tab in Configuration Parameters dialog box: When you specify
an Altera or Xilinx FPGA floating-point library, specify your custom settings in the IP
Settings section.

* Command-line interface: By using the
hdlcoder.createFloatingPointTargetConfig class, you can create a floating-
point target configuration object for a given FPGA floating-point library or the HDL
Coder native floating-point. In the IPConfig property of this object, use the
customize function to customize the IP settings.

For more information, see Customize Floating-Point IP Configuration.

6-19

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/model-design-for-axi4-stream-video-interface-generation.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/customizing-floating-point-ip-configuration.html

R2016b

6-20

Additional block support for FPGA floating-point target library
mapping

For FPGA floating-point target library mapping, HDL Coder supports these Simulink
blocks and block modes:

* MinMax block.

* Unary Minus block.
* Add block with - ports.

See also HDL Coder Support for FPGA Floating-Point Library Mapping.

Default video system reference design

You can use a new Default video system (requires HDMI FMC module)
reference design with these target platforms:

* Xilinx Zynq ZC702 evaluation kit
* Xilinx Zynqg ZC706 evaluation kit
* ZedBoard

You must have Embedded Coder and the Computer Vision System Toolbox™ Support
Package for Xilinx Zynq-Based Hardware.

Custom reference design enhancements

For your custom reference design, by using the hdlcoder.ReferenceDesign class,
specify your own custom parameters and custom callback functions. Therefore, you can
customize the settings that HDL Coder uses to create the project, generate the software
interface model, and build the FPGA bitstream.

The IP Core Generation workflow has these enhancements:

* The Set Target Interface task is split into two tasks. One task is the original Set
Target Interface, and the other task is a new Set Target Reference Design. In the
Set Target Reference Design task, you can specify the parameters and supported
tool version for the target reference design.

The reference design setting has moved from the Set Target Interface task to the
Set Target Reference Design task.

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/minmax.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/unaryminus.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/add.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coder-support-for-fpga-floating-point-library-mapping.html

IP Core Generation and Hardware Deployment

* The new task Set Target Frequency means that you can specify the Target
Frequency (MHz) for your design.

To learn more, see Define Custom Parameters and Callback Functions for Custom
Reference Design and hdlcoder.ReferenceDesign.

Compatibility Considerations

In the Generate Software Interface Model task, the Add IP core device driver check
box has been removed. To add the device driver, in the task Program Target Device,
specify a new Download Programming method. The Download Programming
method copies the generated FPGA bistream, device tree, and system initialization
scripts to the SD card on the Zynq board, and keeps the bitstream on the SD card
persistently.

The reference design names no longer contain a tool version number. If you load a pre-
R2016b model that was saved with a reference design containing a version number in its
name, and then open the HDL Workflow Advisor, HDL Coder generates a warning. To
avoid this warning, select the reference design that does not have the tool version
number, and save the model.

IP Core Generation workflow for Xilinx and Altera FPGA
devices

You can use the IP Core Generation workflow to generate an HDL IP core for any
supported Xilinx or Altera FPGA device. You can integrate the generated IP core into the
Default system reference design, or create a custom board and reference design
definition for your own FPGA board.

+ With a new task Set Target Frequency, you can specify the Target Frequency
(MHz) for your design.

» If the target device does not have an embedded ARM processor, there is no longer the
Generate Software Interface Model task.

To learn more, see IP Core Generation Workflow for Standalone FPGA Devices.

6-21

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/define-custom-reference-design-with-custom-parameters-and-callback-functions.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/define-custom-reference-design-with-custom-parameters-and-callback-functions.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/using-ip-core-generation-workflow-with-standalone-fpga-devices.html

R2016b

6-22

Additional FPGA board support for IP Core Generation
workflow

You can target the following FPGA boards for the IP core generation workflow:

* Xilinx Kintex-7 KC705 development board
* Arrow DECA MAX 10 FPGA evaluation kit

For examples that show how to target the FPGA boards, see Using IP Core Generation
Workflow with Xilinx FPGA Boards: Xilinx Kintex-7 KC705.

Target clock frequency specification

By using the Target Frequency (MHz) setting in the Target and Optimizations pane
in the Configuration Parameters dialog box, you can specify the target frequency for:

* FPGA floating-point target library mapping: Specify the target frequency that you
want the IP to achieve when you use ALTERA MEGAFUNCTION (ALTERA FP
FUNCTIONS).

* Adaptive pipelining: Specify the target frequency for HDL Coder to insert required
number of pipelines to improve area and timing on the target platform.

Previously, you specified the target frequency for floating-point library mapping in the
Configuration Parameters dialog box, on the HDL Code Generation > Global Settings
> Floating Point Target tab.

By using the new Set Target Frequency task in the HDL Workflow Advisor, you can now
specify the target frequency for the following workflows:

* Generic ASIC/FPGA
e IP Core Generation

From the command line, use the TargetFrequency property to save the target
frequency on the model.

Simulink Real-Time FPGA 1/0 workflow support for Xilinx
Vivado

For the new Speedgoat boards, the Simulink Real-Time FPGA I/0 workflow supports
Xilinx Vivado by using the IP Core Generation workflow.

https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/using-ip-core-generation-workflow-with-xilinx-fpga-boards-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/using-ip-core-generation-workflow-with-xilinx-fpga-boards-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/targetfrequency.html

IP Core Generation and Hardware Deployment

See also IP Core Generation Workflow for Speedgoat Boards.

Speedgoat 10333-325K target hardware support

You can target the Speedgoat I0333-325K board with Xilinx Kintex7 for the
Simulink Real-Time FPGA I/0 workflow.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2015.4
o Altera Quartus II 15.1

For a list of supported third-party tools and hardware, see Supported Third-Party Tools
and Hardware.

6-23

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/using-ip-core-generation-workflow-for-speedgoat-boards.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/gs/language-and-tool-version-support.html

R2016a

Version: 3.8
New Features
Bug Fixes

Compatibility Considerations

R2016a

Model and Architecture Design

7-2

Gigasample per Second (GSPS) Signal Processing: Increase
throughput of HDL-optimized FFT and IFFT algorithms using
frame input

You can increase the throughput of the FFT and IFFT calculation by using vector input
and output ports. The internal algorithm computes the FFT or IFFT of each vector
element in parallel.

The FFT implementation is now a Radix 2”2 architecture which improves performance
for vector input. The table compares hardware implementation resources between the old
Radix 2 architecture and the new Radix 2”2 architecture.

Architecture Multipliers Adders Memory |Control Logic For

Vector Input
Radix 2 Hybrid |log,(N-1)) 3xlog,(N) 17N/16 - 1 |Complicated
Radix 272 (SDF) |log,(N-1) 4x1og,(N) N-1 Simple

This change affects these blocks and System objects:

« FFT HDL Optimized
« IFFT HDL Optimized
« dsp.HDLFFT

« dsp.HDLIFFT

Tunable and nontunable parameter enhancements
You can generate HDL code for:

» Stateflow Charts, State Transition Tables, or Truth Tables that use a tunable
parameter.

* MATLAB Function blocks that use a tunable or nontunable parameter with vector,
array, struct, enumeration, or complex data type.

* MATLAB System blocks containing a System object with tunable properties.

See Generate DUT Ports for Tunable Parameters.

https://www.mathworks.com/help/releases/R2016a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-code-for-tunable-parameters.html

Model and Architecture Design

Reusable HDL code enhancements for subsystems with
tunable mask parameters

In R20164a, to generate one reusable HDL file for Subsystem blocks that contain Gain and
Constant blocks for different values of tunable mask parameters, set the
MaskParameterAsGeneric option.

Previously, in addition to setting the MaskParameterAsGeneric option, you used Atomic
Subsystem blocks and selected the tunable attribute in the Mask Editor Parameters &
Dialog tab for the Atomic Subsystem block.

See MaskParameterAsGeneric.

HDL Coder support for nondirect feedthrough setting in
MATLAB Function blocks

HDL Coder now supports code generation from MATLAB Function blocks that use the
nondirect feedthrough setting. With nondirect feedthrough, you can use MATLAB
Function blocks in a feedback loop and prevent algebraic loops.

By default, MATLAB Function blocks have direct feedthrough enabled. To disable it, in the
Ports and Data Manager pane, clear the Allow direct feedthrough check box.

Nondirect feedthrough enables semantics to ensure that outputs rely only on current
state. For additional information, see Use Nondirect Feedthrough in a MATLAB Function
Block.

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/maskparameterasgeneric.html
https://www.mathworks.com/help/releases/R2016a/simulink/ug/use-nondirect-feedthrough-in-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2016a/simulink/ug/use-nondirect-feedthrough-in-a-matlab-function-block.html

R2016a

Block Enhancements

Synchronous Subsystem Toggle: Specify enable and reset
behavior for cleaner HDL code by using State Control block

With the State Control block, you can toggle a subsystem between the default Simulink
reset and enable behavior and the synchronous hardware reset and enable behavior. How
you set the State Control block affects blocks within the subsystem that have state and
have reset or enable ports.

If you specify synchronous hardware behavior, the HDL code is cleaner and requires
fewer resources because HDL Coder does not generate bypass registers for enabled
subsystems or multiplexers for blocks with reset ports.

To toggle a subsystem between synchronous hardware behavior and default Simulink
behavior, add a State Control block to the subsystem:

* For synchronous hardware behavior, in the State Control block, set State control to
Synchronous.

* For default Simulink behavior, in the State Control block, set State control to
Classic.

The State Control, Enabled Synchronous Subsystem, and Synchronous Subsystem blocks
are available as part of the HDL Subsystems block library in HDL Coder. The
Synchronous Subsystem and Enabled Synchronous Subsystem blocks use the
synchronous hardware behavior of the State Control block with the Subsystem and
Enabled Subsystem blocks respectively.

Block Enhancements

-

HE Simulink Library Browser

=] Enter search term =3~ = 2
HDL CoderfHDL Subsystems
4 HOL Coder - e

Commonly Used Blocks Nint outt Synchronous
Discontinuities
Discrete Enabled Synchronous State Contral
HOL Cperations Subsystem
HOL Subsystems
Logic and Bit Operations b [l Cutt fp
Lookup Tables
Math Operations synchronous Subsystem

Madel Verification
Model-Wide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing
Sinks

Sources

User-Defined Functions
4 i

m

Use the State Control block with Simulink, DSP System Toolbox, Communications
Toolbox™, or Vision HDL Toolbox blocks that support HDL code generation.

For more information, see State Control and Synchronous Subsystem Behavior with the

State Control Block.

Region-of-interest selection and grayscale morphology

Vision HDL Toolbox introduces a new block, ROI Selector, that selects a region of interest
(ROI) from a video stream. You can specify one or more regions by using input ports or
mask parameters. The block returns each new region as streaming pixel data and a
corresponding pixelcontrol bus.

The visionhdl.R0ISelector System object provides equivalent MATLAB functionality.

7-3

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/statecontrol.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-hdl-code-using-state-control-block.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-hdl-code-using-state-control-block.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.roiselector-class.html

R2016a

Vision HDL Toolbox includes new blocks and System objects that perform morphology
operations on grayscale input data.

Block System object

Grayscale Closing visionhdl.GrayscaleClosing
Grayscale Dilation visionhdl.GrayscaleDilation
Grayscale Erosion visionhdl.GrayscaleErosion
Grayscale Opening visionhdl.GrayscaleOpening

These blocks and System objects support HDL code generation.

Nested bus support enhancements

In R2016a, HDL Coder supports all nested virtual and nonvirtual buses. For example, you
can now generate HDL code for a Delay block with a nested virtual bus signal input in
your Simulink model.

Block support enhancements

You can generate HDL code for:

* A Bus to Vector block.

* A Dot Product block with Tree architecture when input signals are a mix of row and
column vectors.

» A Shift Arithmetic block when Bits to shift: Number is a vector of bit shift values or
Bits to shift: Source is Input port.

* Masked Inport and Outport blocks.
* A Matrix Concatenate block with Multidimensional array mode.
* A Bus Assignment block with bus signal input containing a nested bus signal.

* A MATLAB System block containing a user-defined System object with bus inputs or
outputs.

* An n-D Lookup Table block with the Breakpoints specification parameter or a
Prelookup block with the Specification parameter set to Explicit values or
Even spacing.

https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleopening-class.html

Block Enhancements

* A Subsystem block with BlackBox architecture and a cell array variable in the
GenericlList field as input to the Subsystem block.

7-7

R2016a

Code Generation and Verification

Faster Test Bench Generation and HDL Simulation: Generate
SystemVerilog DPI test benches for large data sets with HDL
Verifier

Reduce test bench generation and simulation time, especially when using large data sets.
When you call the makehdltb function, set the GenerateSVDPITestBench property.
The coder generates a DPI component for your entire Simulink model, including your
DUT and data sources. Your entire model must support C code generation with Simulink
Coder™. The coder generates a SystemVerilog test bench that compares the output of the
DPI component with the output of the HDL implementation of your DUT. The tool also
generates a build script for your simulator. You can specify 'ModelSim', 'VCS', or
'Incisive'.

makehdltb(gcb, 'GenerateSVDPITestBench', 'ModelSim', 'GenerateHDLTestbench', 'off')

You must have an HDL Verifier license and a Simulink Coder license to use this feature.

Code Generation Report enhancements

The Code Generation Report has these enhancements:

* A new Code Interface Report shows the DUT input and output port names, data types,
and bit widths.

* The High-level Resource Report shows the number of 1-bit registers and I/O bits. It
includes resource usage for model references.

See Code Interface Report and High-level Resource Report in Resource Utilization
Report.

» For each group of streamed or shared blocks, the Sharing and Streaming report
provides more details:

* For shared blocks, the report shows the resource type, block word length, number
of blocks in the group, and a traceability link to the blocks in the original model
and generated model. It includes a Highlight shared resources and
diagnostics link to highlight in the original model and generated model the
shared blocks and blocks that are barriers to resource sharing.

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/makehdltb.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-utilization-report.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-utilization-report.html

Code Generation and Verification

* For streamed blocks, the report links to the group of streamed blocks and shows
the streaming factor. It includes a Highlight streaming groups and
diagnostics link to highlight in the original model and generated model the
streamed blocks and blocks that are barriers to streaming.

See Streaming and Sharing Report in Optimization Report.

Changes to Fixed-Point Conversion Code Coverage

If you use the HDL Coder app to convert your MATLAB code to fixed-point code and
propose types based on simulation ranges, the app shows code coverage results. In
previous releases, the app showed the coverage as a percentage. In R2016a, the app
shows the coverage as a line execution count.

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/optimization-report.html

R2016a

13
14
15
lé
17
1a
139
20
21
22
23
24
25
26
27
28
29
30
21
32
33
34
35
36
a7
38
39
40
41
42

7-10

current state = 51; 1 ecall=

el=e

Z = true:;

current state{ 1)
end

Z = false:
current state{ 1)
el=e
= true;

current state{ 1)

end

See Code Coverage in Automated Fixed-Point Conversion.

Fixed-point conversion requires the Fixed-Point Designer™ software.

Progress indicator for HDL test bench generation

HDL Coder displays a series of dots to show progress during HDL test bench generation
for test benches with a long simulation time.

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/fixed-point-conversion.html#bt1s0y3
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/fixed-point-conversion.html

Code Generation and Verification

HDL test bench generation simulates the Simulink model to collect data for every signal
in the DUT. This data collection phase can therefore significantly impact HDL test bench
generation time. The progress indicator dots help as visual indicators during this long
phase of testbench generation.

Test bench generation with updated model stop time

If you generate a test bench, update the stop time in your model, and regenerate the test
bench. The generated test bench uses the updated stop time.

Previously, test bench generation used the original stop time even if the stop time was
updated.

Performance improvement for MATLAB to HDL test bench
generation

In the MATLAB to HDL workflow, HDL Coder uses MEX code for data logging to speed up
HDL test bench generation.

Coding standard check for length of control flow statements
in a process block

When you enable the Industry coding standard, HDL Coder checks for the length of
control flow statements, such as if-else, case and loops, which are described separately
within a process block (for VHDL code) or an always block (for Verilog code). If the length
of control flow statements in your design exceeds the specified limit, the coder displays
an error in the HDL coding standard report.

See HDL Coding Standard Rules.

Warnings for non-ASCIl characters in generated HDL code

If you have non-ASCII content in model annotations and Model Info blocks, HDL Coder
issues warnings during checkhdl and makehdl. Non-ASCII characters in the generated
HDL code can cause RTL simulation and synthesis tools to fail to compile the code.

7-11

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/hdl-coding-standard-rules.html

R2016a

Japanese translation for resource report

For Japanese versions of HDL Coder, the resource utilization report is in Japanese.

7-12

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-utilization-report.html

Speed and Area Optimizations

Speed and Area Optimizations

Resource Sharing Enhancements: Share multipliers and gain
operations that have different data types

HDL Coder can now share multiply and gain blocks that have the same word length but
different fraction lengths and different signs. This optimization reduces the resource
utilization by sharing more multipliers and gain operations.

Previously, the word length, fraction length, and signs of the multiply or gain blocks had
to be the same.

See Requirements and Limitations for Resource Sharing in Resource Sharing.

Biquad Filter block participates in subsystem HDL
optimizations

The Biquad Filter block is now included in subsystem optimizations for speed and area of
the generated HDL. To specify resource sharing, streaming, and pipeline options, right-
click the subsystem containing the Biquad Filter block and open the HDL Code > HDL
Properties dialog box. To use these optimizations you must set the Architecture of the
Biquad Filter block to Fully parallel.

The optimizations work the same way as the optimizations for the Discrete FIR Filter
block. You can share resources between Biquad Filter and Discrete FIR Filter blocks in
the same subsystem.

More functions for Multiply-Add block to map to DSP

You can now choose from three different functions for the Multiply-Add block to map to
the DSP blocks in Altera and Xilinx FPGA libraries. The three functions are c+(a.*b), c-
(a.*b), and (a.*b) -c.

For details, see Multiply-Add.

7-13

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-sharing.html#btg_5ht-1
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/multiplyadd.html

R2016a

7-14

Generation of Multiply-Add blocks for complex multiply
operations

If you have Product or Gain blocks with complex input signals in your Simulink model,
HDL Coder generates a model with Multiply-Add blocks. These Multiply-Add blocks map
efficiently to the DSP blocks in Altera and Xilinx FPGA libraries.

RAM mapping for pipeline and floating-point delays

To optimize for area by mapping pipeline registers to RAM, in the Configuration
Parameters dialog box, select the Map pipeline delays to RAM check box from the HDL
Code Generation > Global Settings > Optimization tab. See
MapPipelineDelaysToRAM.

HDL Coder also maps design delays and the pipeline registers in floating-point type to
RAM.

Initialization script generated for Delay blocks without reset
for ModelSim simulation

If you have delay blocks with in your model with ResetType set to None, HDL Coder
generates a script to initialize these delay blocks for simulation with ModelSim.

Previously, you either modified the generated code or wrote your own script to initialize
these delay blocks.

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/mappipelinedelaystoram.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

Hard Floating-Point IP Targeting: Generate HDL to map to
Altera Arria 10 floating-point units at user-specified target
frequency

HDL Coder can now map your Simulink model to Altera floating-point IP (ALTERA FP
FUNCTIONS) at the target frequency that you specify.

Previously, when mapping to Altera megafunction IP (ALTFP) or Xilinx LogiCORE® IP, you
could specify only whether to optimize the Simulink model for minimum or maximum
latency and for speed or area.

For more information, see FPGA Floating-Point Library Mapping and TargetFrequency.

Compatibility Considerations

Previously, you chose the floating-point target library by selecting the Set Target Library
(for floating-point synthesis support) check box from the HDL Workflow Advisor.

You now specify the floating-point target library from the HDL Code Generation >
Global Settings > Floating Point Target tab in the Model Configuration Parameters
dialog box.

End-to-end scripting for Simulink Real-Time FPGA 1/0 workflow

You can use the HDL Workflow Command Line Interface (CLI) to script the entire
Simulink Real-Time™ FPGA 1/O workflow.

To create the script to configure your design using the HDL Workflow Advisor, generate a
target hardware bitstream or project from your Simulink model, and then export a script.
Run the exported script, which contains HDL Workflow CLI commands, to replicate your
HDL Workflow Advisor settings and generate the same target hardware bitstream or
project.

7-15

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/map-to-an-fpga-floating-point-library.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/targetfrequency.html

R2016a

7-16

SoC device programmed by using Ethernet connection

When using the IP core generation workflow in the HDL Workflow Advisor, you can
program the target SoC device by using an Ethernet connection.

You must have Embedded Coder and the Embedded Coder Support Package for Intel SoC
Devices.

Custom programming method for IP Core Generation workflow

Using the CallBackCustomProgrammingMethod method of the
hdlcoder.ReferenceDesign class, you can define your own function to program the
target device in your custom reference design.

Interface connection name and type for custom reference
designs

Using the AXI4SlaveInterface method of the hdlcoder.ReferenceDesign class,
you can specify the type of an AXI4 slave interface in a custom reference design. The type
can be AXI4, or AXI4-Lite. You can also name the interface.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2015.2
* Altera Quartus II 15.0

For a list of supported, third-party tools and hardware, see Supported Third-Party Tools
and Hardware.

Automatic generation of FPGA top-level wrapper based on
workflow

For the FPGA Turnkey and Simulink Real-Time FPGA I/O workflows, HDL Coder
generates a top-level HDL code wrapper and a constraint file that contains pin mapping
and clock constraints. In the HDL Workflow Advisor, for the FPGA Turnkey and Simulink

https://www.mathworks.com/help/releases/R2016a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/gs/language-and-tool-version-support.html

IP Core Generation and Hardware Deployment

Real-Time FPGA I/O workflows, the name of the Generate RTL Code and Testbench
task is now Generate RTL Code.

To run the Annotate Model with Synthesis Result task, your target workflow must be
Generic ASIC/FPGA.

Compatibility Considerations

For all workflows, the Generate FPGA top level wrapper check box and
GenerateTopLevelWrapper of the hdlcoder.WorkflowConfig class have been
removed.

For the Generic ASIC/FPGA workflow, if you specify the GenerateTopLevelWrapper
property of the hdlcoder.WorkflowConfig, HDL Coder displays a warning. In a future
release, specifying this property will result in an error.

For the FPGA Turnkey or Simulink Real-Time FPGA 1/O workflow, if you specify the
following hdlcoder.WorkflowConfig properties, HDL Coder displays a warning. In a
future release, specifying these properties will result in an error:

* RunTaskGenerateRTLCodeAndTestbench

* RunTaskVerifyWithHDLCosimulation

* RunTaskAnnotateModelWithSynthesisResult

* GenerateRTLTestbench

* GenerateCosimulationModel

* CosimulationModelForUseWith

* GenerateValidationModel

* GenerateTopLevelWrapper

* CriticalPathSource

* CriticalPathNumber

* ShowAllPaths

* ShowDelayData

* ShowUniquePaths

* ShowEndsOnly

7-17

R2015aSP1

Version: 3.6.1

Bug Fixes

R2015b

Version: 3.7
New Features
Bug Fixes

Compatibility Considerations

R2015b

Model and Architecture Design

9-2

Model Arguments: Parameterize instances of model reference
blocks

You can generate VHDL® generic or Verilog parameter syntax for model arguments
you use in a masked or unmasked Model block. In the model, you can use the model
arguments in Gain or Constant blocks.

For details, see Generate Parameterized Code for Referenced Models.

Integration with Xilinx Vivado System Generator for DSP
blocks

You can generate code for subsystems containing Xilinx System Generator for DSP blocks
when Xilinx Vivado is your synthesis tool. For setup information, see Xilinx System
Generator Setup for ModelSim Simulation.

struct input and output for top-level MATLAB design function

You can generate HDL code for a top-level MATLAB design function that has struct
inputs or outputs. You can also generate HDL code for a test bench that uses struct
data. Previously, struct data was supported within the design, but not at the top-level
inputs or outputs.

For example, in Vision HDL Toolbox, this removes the requirement to flatten the
pixelcontrol structure into the component signals, as shown here.

function [pixOut,hStartOut,hEndOut,vStartOut,vEndOut,validOut] =
HDLTargetedDesign(pixIn,hStartIn,hEndIn,vStartIn, vEndIn validIn)

With HDL code generation support for structures, the arguments can now include the
control signal structure.

function [pixQut,ctrlOut] = HDLTargetedDesign(pixIn,ctrlIn)

The structure is flattened to the individual control signals in the generated Verilog or
VHDL code.

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-parameterized-code-for-model-reference.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/gs/toolbox-setup.html#bt3f39k-1
https://www.mathworks.com/help/releases/R2015b/hdlcoder/gs/toolbox-setup.html#bt3f39k-1

Model and Architecture Design

Tunable parameters in MATLAB Function block

When you generate code for a MATLAB Function block that uses a tunable parameter, the
coder creates a top-level DUT port for the tunable parameter in the generated code.

For details, see Generate DUT Ports for Tunable Parameters.

Output initialization requirement for Stateflow Moore Charts

If you have a model with a Stateflow Moore Chart, select the Initialize Outputs Every
Time Chart Wakes Up chart property. By selecting this property, HDL Coder prevents
latching of outputs, generates more readable HDL code, and provides better synthesis
results.

Compatibility Considerations

In previous versions, you did not have to set the chart property. Starting in R2015b, If you
do not select the Initialize Outputs Every Time Chart Wakes Up check box, HDL
Coder generates an error.

Enforce ASCII character requirement for model property
values

For HDL model properties that require ASCII character strings, HDL Coder now
generates an error if you assign a non-ASCII string value.

The following model properties accept non-ASCII character strings:

* BlocksWithNoCharacterizationFile
* CriticalPathEstimationFile

* DateComment

» DistributedPipeliningBarriersFile

» HighlightFeedbackLoopsFile

* SimulationLibPath

* SynthesisProjectAdditionalFiles

» TargetDirectory

9-3

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-code-for-tunable-parameters.html

R2015b

Compatibility Considerations

Previously, HDL Coder did not generate an error if you assigned a non-ASCII character
string to a model property that required ASCII characters.

To fix the error, at the command prompt, enter: hdlset param (gcs,
model property name, 'ASCII value').

9-4

Block Enhancements

Block Enhancements

Expanded Bus Support: Generate HDL for enabled or
triggered subsystems with bus inputs and for black boxes
with bus 1/0

You can now generate HDL code for the following blocks with bus input or output signals:

* Enabled Subsystem
» Triggered Subsystem
* Subsystem with black box implementation

Library Browser view shows blocks supported for HDL code
generation

In the Library Browser, you can enable a filtered view that shows all the blocks that are
compatible with HDL code generation. The view shows only those blocks for which you
have a license. To use this filtered view, at the command prompt, enter hd11ib.

After using the hd11ib command, if you close and reopen the Library browser, the view
that shows only those blocks that are compatible for HDL code generation persists. To
display all blocks in the Library Browser, enter hdllib('off').

For more information, see Show Blocks Supported for HDL Code Generation.

Compatibility Considerations

Previously, the hd11ib command created a supported blocks library called
hdlsupported. The hdl1ib command now opens the Library Browser with a view that
shows the supported blocks for HDL code generation, but does not create a block library.

To create the supported blocks library, at the command prompt, enter
hdllib('librarymodel"').

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/show-blocks-supported-for-hdl-code-generation.html

R2015b

9-6

Trigonometric Function block with sin or cos function can have
vector inputs

You can generate code for a Trigonometric Function block with vector inputs when the
Function is sin, cos, cos + jsin, or sincos, and the Approximation method is
CORDIC.

In the HDL Block Properties dialog box, you can also set UsePipelinedKernel to Off for
zero-latency combinatorial HDL code. To avoid delay balancing errors, you can set
UsePipelinedKernel to Off if the block is in a feedback loop.

See Trigonometric Function.

Discrete FIR Filter supports HDL optimizations

You can now optimize speed and area of the generated HDL for the Discrete FIR Filter
block. Right-click the subsystem containing the Discrete FIR Filter block, and open the
HDL Code > HDL Properties dialog to specify resource sharing, streaming, and
pipeline options. You can use these optimizations when the Architecture is Fully
parallel. This feature requires an HDL Coder license. See Reduce Critical Path with
Distributed Pipelining, Resource Sharing of Multipliers to Reduce Area, and HDL Block
Properties.

HDL-optimized FIR Rate Conversion block and System object

FIR Rate Conversion HDL Optimized block in DSP System Toolbox upsamples, filters, and
downsamples a signal using an efficient polyphase FIR structure. The block operates on
one sample at a time and provides hardware control signals to pace the flow of samples in
and out of the block. The dsp.HDLFIRRateConverter System object provides
equivalent MATLAB functionality. Both the block and System object support HDL code
generation.

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/reduce-critical-path-with-distributed-pipelining.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/reduce-critical-path-with-distributed-pipelining.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/resource-sharing-of-multipliers-area-optimization.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/block-implementation-parameters.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/block-implementation-parameters.html

Code Generation and Verification

Code Generation and Verification

HDL Coder Configuration Parameters in list view

The Configuration Parameters list view shows HDL Code Generation parameters. In list
view, you can search, filter, sort, and edit parameters. You can also get command-line
parameter names for use in scripts. To use the list view, click the List button at the top of
the Configuration Parameters dialog box.

Some of the HDL Code Generation parameters, such as the lint script, synthesis script,
and HDL coding standard parameters, are unavailable in list view. To see all the HDL
Code Generation parameters, use the category view.

To learn about Configuration Parameters list view, see Configuration Parameters Dialog
Box Overview.

Support for configuration parameter Default parameter
behavior

HDL code you generate for models that use the configuration parameter Default
parameter behavior, which was previously called Inline parameters, follows the new
behavior.

To learn more about the Default parameter behavior name and functionality change,
see Configuration parameter Inline parameters name and functionality change.

Compatibility Considerations

Sample time propagation for Inf rates in Simulink can differ from previous releases. If
you have a model with Inf sample times, check the sample time legend to make sure it
shows the rates you expect.

To fix code generation issues from such models, fully specify the sample time. For
example, specify the sample time for any Constant blocks with Inf sample time.

Test bench performance improvements with file 1/0

Infrastructure improvements in test bench generation with file I/O have improved test
bench performance by reducing:

https://www.mathworks.com/help/releases/R2015b/simulink/gui/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/releases/R2015b/simulink/gui/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwj256-1

R2015b

* Simulation time
* Memory use
* Code generation time

HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink
simulation to data files (.dat). During HDL simulation, the HDL test bench reads the
saved stimulus from the .dat files.

To learn more about Simulink test bench generation, see Test Bench Generation.

To learn more about MATLAB test bench generation, see Test Bench Generation.

Compatibility Considerations

The HDL test bench code generated for a design in a previous release may differ from the
code generated for the same design in the current release.

Previously, by default, DUT stimulus and reference data was generated as constants in the
test bench code. To generate test bench data that used file I/O, you had to set the
UseFileIOInTestBench propertyto 'on'.

The UseFileIOInTestBench property is now 'on' by default.

Image processing examples

Five examples of image processing and HDL code generation using Vision HDL Toolbox
are added in this release.

* Gamma Correction

* Histogram Equalization

* Edge Detection and Image Overlay

* Edge Detection and Image Overlay with Impaired Frame

» Noise Removal and Image Sharpening

9-8

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/test-bench-generation.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-test-bench-with-file-io.html

Speed and Area Optimizations

Speed and Area Optimizations

Quality of Results Improvement: Stream and share resources
more broadly and efficiently

The streaming optimization works with:
* Subsystems that contain nested subsystems. Previously, the streamed subsystem had
to be a leaf subsystem.

* A streaming factor that is divisible by vector width. Previously, the streaming factor
had to be a divisor of the vector width.

* Blocks that are not supported for streaming. Instead, the optimization can work
around unsupported blocks. Previously, the presence of unsupported blocks caused
streaming to fail.

The resource sharing area optimization can implement shared resources at the clock rate
within clock-rate pipelining regions, without using oversampling.

The resource sharing optimization can now share a subset of all the identical atomic
subsystems in your design. Previously, you had to share all of the atomic subsystems, or
none.

The hierarchy flattening optimization can operate on individual atomic subsystems, even
if there are other identical atomic subsystems in the design.

Multiply-Add block

A new block, Multiply-Add, that performs a hardware optimized multiplication-addition
operation, is available in the HDL Operations block library. Using this block can help your
design map to DSPs in hardware. The resource sharing optimization can also share
Multiply-Add blocks.

To learn about the Simulink behavior, see Multiply-Add.

To learn about the hardware implementation and HDL block properties, see Multiply-Add.

9-9

https://www.mathworks.com/help/releases/R2015b/simulink/slref/multiplyadd.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/multiplyadd.html

R2015b

9-10

Hierarchy flattening for masked subsystems and user library
blocks

For masked subsystems and user library blocks, you can flatten hierarchy to enable
further speed and area optimization.

For details, see Hierarchy Flattening.

Loop optimization improvement

The loop streaming implementation now uses fewer multiplexers and therefore uses less
area.

Complex Gain speed optimization

Register retiming for a complex Gain block inserts a register between the multiplier and
adder.

Redesigned serializer for streaming and resource sharing

The serializer used in streaming and resource sharing is redesigned as a combinational
switch to use less area. It no longer uses registers in its implementation.

Tapped Delay optimization

The Tapped Delay block is supported for streaming, retiming, and floating-point library
mapping. It also no longer inhibits clock-rate pipelining.

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/hierararchy-flattening.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

Tunable Parameters: Map to AXI4 interfaces to enable
hardware run-time tuning by the embedded software on the
ARM processor

For Xilinx Zynq or Altera SoC hardware, you can map tunable parameters in your
Simulink model to an AXI4, AXI4-Lite, or external interface in the generated IP core. You
can then use the embedded software to dynamically tune the parameter in hardware.

You can also map tunable parameters to the PCI interface in the Simulink Real-Time
FPGA I/0 workflow.

The HDL Workflow Advisor Target Platform Interface Table shows tunable parameters in
the Port Name column. You can map each tunable parameter to a target platform
interface as you can with any DUT port.

To make a tunable parameter available for mapping to a target interface, use it in a Gain,
Constant, or MATLAB Function block.

End-to-end scripting from design through IP core generation,
FPGA Turnkey, and generic ASIC/FPGA workflows

You can use the HDL Workflow Command Line Interface (CLI) to script the entire generic
ASIC/FPGA, IP core generation, and FPGA Turnkey workflows.

The simplest way to create the script is to configure your design using the HDL Workflow
Advisor, generate a target hardware bitstream or project from your Simulink model, then
export a script. You can run the exported script, which contains HDL Workflow CLI
commands, to replicate your HDL Workflow Advisor settings and generate the same
target hardware bitstream or project.

For details, see Run HDL Workflow with a Script.

Synthesis objective for synthesis tool target optimization

You can specify a high-level synthesis objective that maps to your third-party synthesis
tool can use to optimize the target hardware. The following high-level synthesis objectives

9-11

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/run-hdl-workflow-as-a-script.html

R2015b

9-12

are available from the HDL Workflow Advisor and the HDL Workflow Command Line
Interface:

* Area Optimized

* Compile Optimized

* Speed Optimized

* None (default)

For details about how the synthesis ohjective maps to Tcl commands, see Synthesis
Objective to Tcl Command Mapping.

AXl4-Stream vector interface

In the hardware-software codesign workflow, for streaming applications, you can use
vector ports to connect the hardware DUT to the rest of the model. With an Embedded
Coder license, you can then generate a software interface model that includes the
embedded software DMA driver block for the generated IP core.

In the hardware DUT, connect the top-level input and output vector ports to Serializer1D
and Deserializer1D blocks. HDL Coder detects this modeling pattern, and generates a
software interface model that replaces the Serializer1D, Deserializer1D, and DUT.

For details, see Model Design for AXI4-Stream Interface Generation.

Connect IP core with other IP blocks in custom reference
designs

Using the hdlcoder.ReferenceDesign.addInternalIOInterface method, you can
define a connection between your generated IP core and other IP in a custom reference
design. You can use this method for Altera Quartus II, Xilinx Vivado, and Xilinx ISE
hardware targets.

Kintex UltraScale and Virtex UltraScale device family support
in generic ASIC/FPGA and IP core generation workflows

In the generic ASIC/FPGA workflow and IP core generation workflow, you can target
Xilinx Kintex® UltraScale and Virtex UltraScale devices.

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/synthesis-objective-tcl-commands.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/synthesis-objective-tcl-commands.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/model-design-for-axi4-stream-interface-generation.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/hdlcoder.referencedesign.addinternaliointerface.html

R2015a

Version: 3.6
New Features
Bug Fixes

Compatibility Considerations

R2015a

Model and Architecture Design

10-2

Localized control using pragmas for pipelining, loop
streaming, and loop unrolling in MATLAB code

You can use pragmas in your MATLAB code to specify pipelining, loop streaming, and loop
unrolling optimizations for specific operations.

For a loop statement, you can use coder.hdl.loopspec to specify loop unrolling or loop
streaming.

For an operation or expression, you can use coder.hdl.pipeline to insert one or more
pipeline registers.

The following example shows how to use these two pragmas:

function y = hdltest(x)
pv = uint8(1);
pv = coder.hdl.pipeline(pv + x, 4);

y = uint8(zeros(1,10));

coder.hdl.loopspec('stream', 5);
for i = 1:10
y(i) = pv + i;
end
end

To learn more, see:

* Pipeline MATLAB Expressions
* Optimize MATLAB Loops

Compatibility Considerations

If you have a model that uses the VariablesToPipeline HDL block property, or a MATLAB
design that uses the HDL Workflow Advisor Pipeline variables field, the software
displays a warning when you generate code.

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.loopspec.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/pipeline-matlab-expressions.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/loop-optimization-1.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/block-implementation-parameters.html#bubbbgb-1

Model and Architecture Design

Replace instances of Variables ToPipeline or Pipeline variables with
coder.hdl.pipeline. VariablesToPipeline and Pipeline variables will be
removed in a future release.

Model templates for HDL code generation

Model templates are available for you to use when designing a model for HDL code
generation. These model templates show design patterns for using Simulink blocks to
model hardware and generate efficient HDL code.

For example, the Simulink Template Gallery contains model templates for ROM, state
machines, shift registers, and multipliers that map to DSP48s.

To view the HDL Coder model templates, open the Simulink Library Browser, click the
New Model button arrow, and select From Template. In the Simulink Template Gallery,
browse to the HDL Coder folder.

10-3

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html

R2015a

+ HDL Coder
:
r
= =
s - > -

= - = - Loy P !
=

Complex Multiplier MATLAB Arithmetic ROM

L

o
T

== —

=
o =
=)
o

L

Register SRL Simulink Hardware Pattern 5

== I
N e =]
| e " i
State Machine in MATLAB Stateflow HDL

For more information, see Simulink Templates For HDL Code Generation.

10-4

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/hdl-coder-simulink-templates.html

Model and Architecture Design

Tunable parameter data type and model reference support
enhancements

You can generate a DUT port for tunable parameters that have the following data types:

* Complex

* Vector

* Structure

* Enumeration

You can also generate a DUT port for tunable parameters when your DUT is a model
reference.

To learn how to generate code for tunable parameters, see Generate DUT Ports For
Tunable Parameters.

Include custom or legacy code using DocBlock

You can integrate custom or legacy HDL code into your design with a black box
subsystem that contains DocBlock.

In the DocBlock HDL Block Properties dialog box, set Architecture to HDLText and
TargetLanguage to your target HDL language. Specify the interface to your custom code
by customizing the black box subsystem interface.

For details, see Integrate Custom HDL Code Using DocBlock.

Single library for VHDL code generated from model references
You can generate VHDL code for model references in your design into a single library. To

generate code into a single library, set the UseSinglelLibrary property to on using
makehdl or hdlset param.

10-5

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/integrate-custom-hdl-code-using-docblock.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/usesinglelibrary.html

R2015a

Timing controller architecture and postfix options in
Configuration Parameters dialog box and HDL Workflow

Advisor

You can specify the timing controller architecture and timing controller postfix in the
Configuration Parameters dialog box and HDL Workflow Advisor, from both Simulink and

MATLAB.

You can also specify these timing controller options at the command line.

Functionality Being Removed or Changed

Functionality

What Happens
When You Use This
Functionality

Use This
Functionality
Instead

Compatibility
Considerations

AlteraBlackBox |The software Create an Altera DSP |Replace all instances
architecture for displays an error. Builder Subsystem |of AlteraBlackBox
Subsystem block with Module, and
follow the procedure
in Create an Altera
DSP Builder
Subsystem.
XilinxBlackBox |The software Create a Xilinx Replace all instances
architecture for displays an error. System Generator of XilinxBlackBox
Subsystem block Subsystem with Module, and

follow the procedure
in Create a Xilinx
System Generator
Subsystem.

10-6

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html

Model and Architecture Design

Functionality

What Happens
When You Use This
Functionality

Use This
Functionality
Instead

Compatibility
Considerations

VariablesToPipel
ine block property
or Pipeline
variables field

Still runs.

coder.hdl.pipeli
ne

Replace all instances
of
VariablesToPipel
ine or Pipeline
variables with
coder.hdl.pipeli
ne. See “Localized
control using
pragmas for
pipelining, loop
streaming, and loop
unrolling in MATLAB
code” on page 10-2.

10-7

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html

R2015a

Block Enhancements

10-8

Enumeration support at DUT ports

You can use enumerated data at the top-level DUT ports for your design, whether the DUT
is a MATLAB design function, or a Simulink subsystem or model reference.

Map to multiple RAM banks

You can map an hdl.RAM System object in your MATLAB code to multiple RAM banks.
If you specify vector inputs to the step method, the hd1l.RAM maps to RAM banks. The

number of RAM banks is the same as the number of elements in each input vector.

Code generation for bus output from Bus Selector and
Constant blocks

You can generate code for:

* Bus Selector with Output as bus enabled.
* Constant with Output data type set to Bus.

Initial condition for DeserializerlD

For the Deserializer1D block, you can specify the Initial condition.

Block support enhancements

Additional Simulink block features are supported for HDL code generation:

* Delay with delay length of 0

* Delay with Show enable port enabled

* Dot Product within a delay balancing region

* Model reference block Description field maps to a comment
* Deserializer1D and Serializer1D support enumeration data.

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/deserializer1d.html

Block Enhancements

Code generation for predefined System objects in MATLAB
System block

You can generate code for the following predefined System objects when you use them in
a MATLAB System block:

* hdl.RAM

e comm.HDLCRCDetector

e comm.HDLCRCGenerator

* comm.HDLRSDecoder

e comm.HDLRSEncoder

* dsp.DCBlocker

* dsp.HDLComplexToMagnitudeAngle
o dsp.HDLFFT

* dsp.HDLIFFT

* dsp.HDLNCO

Specify filter coefficients using a System object

For Biquad Filter, FIR Decimation, FIR Interpolation, CIC Decimation, and CIC
Interpolation blocks, HDL code generation is supported for Coefficient source set to
System object. These blocks and objects are available in DSP System Toolbox.

Libraries for HDL-supported DSP System Toolbox and
Communications Toolbox blocks

Find blocks that support HDL code generation, in the ‘DSP System Toolbox HDL Support’
and ‘Communications System Toolbox HDL Support’ libraries, in the Simulink library
browser. Alternately, you can type dsphdl1lib and commhd11lib at the MATLAB
command prompt to open these libraries.

The blocks in dsphd11ib and commhdl1lib have their parameters set for HDL code
generation.

10-9

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlcrcdetector-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlcrcgenerator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlrsdecoder-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlrsencoder-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlcomplextomagnitudeangle-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlnco-class.html

R2015a

10-10

Support for image processing, video, and computer vision
designs in new Vision HDL Toolbox product

Vision HDL Toolbox provides pixel-streaming algorithms for the design and
implementation of vision systems on FPGAs and ASICs. It provides a design framework
that supports a diverse set of interface types, frame sizes, and frame rates, including
high-definition (1080p) video. The image processing, video, and computer vision
algorithms in the toolbox use an architecture appropriate for HDL implementations.

The toolbox algorithms are designed to generate readable, synthesizable code in VHDL
and Verilog (with HDL Coder). The generated HDL code can process 1080p60 in real
time.

Toolbox capabilities are available as MATLAB System objects and Simulink blocks.
See Vision HDL Toolbox

Support for ‘inherit via internal rule’ data type setting on FIR
Decimation and Interpolation blocks

FIR Decimation and FIR Interpolation blocks now support HDL code generation with data
types specified by Inherit via internal rule. These blocks are available in DSP System
Toolbox.

https://www.mathworks.com/help/releases/R2015a/visionhdl/index.html

Code Generation and Verification

Code Generation and Verification

Coding standard check for X and Z constants

When you enable the Industry coding standard, HDL Coder checks for unknown or high-
impedance constants in your design. If your design uses these constants, the coder
displays a warning.

For VHDL, the coder checks for X, Z, U, W, H, L, and -. For Verilog, the coder checks for X
and Z.

Coding style improvements

The generated code has the following coding style improvements:

» Stateflow charts for Moore machines generate code that follows the coding style
guidelines from Altera and Xilinx. Open the hdlcoder fsm mealy moore model to
see an example of a Moore chart that generates this style of HDL code.

* Comments for a Simulink block appear with the main body of the associated generated
code.

* For Unit Delay Resettable, Unit Delay Enabled Resettable, and Delay with External
reset set to Level, the reset signal is applied within the clocked region for better
synthesis results.

» Fewer temporary variables for improved multiplier mapping and readability.
» Expressions of the form (a+1) -1 are reduced to a.
* One-line boolean expressions are generated when they can replace if-else statements.

» Verilog code generated for arrays of constants is more compact. The number of lines
of generated code is reduced by 50%.

Example HDL implementation of LTE OFDM modulator and
detector with LTE Toolbox

The Verification of HDL Implementation of LTE OFDM Modulator and Detector example
uses Simulink blocks that support HDL code generation to implement a hardware-friendly
LTE Orthogonal Frequency Division Multiplexing (OFDM) modulator and detector.
Running this example requires LTE Toolbox™.

10-11

https://www.mathworks.com/help/releases/R2015a/lte/examples/verification-of-hdl-implementation-of-lte-ofdm-modulator-and-detector.html

R2015a

Speed and Area Optimizations

10-12

Critical path estimation without running synthesis

Critical path estimation helps you to find the timing critical path in your design without
running third-party synthesis tools.

If you enable critical path estimation when you generate code, HDL Coder computes the
timing critical path and generates a script that highlights the estimated critical path in
the generated model.

To find your estimated critical path, in HDL Workflow Advisor > HDL Code
Generation > Set Code Generation Options > Set Basic Options, select Generate
high-level timing critical path report.

The estimated critical path is calculated using static timing analysis. In the current
release, the timing data for each block is based on Xilinx Virtex-7, speed grade -1
hardware.

If a block in your design does not have timing data, the coder generates a second block
highlighting script. To see the uncharacterized blocks in your design, click the script link
displayed in the MATLAB command window or HDL Workflow Advisor Result pane.

For more information, see Find Estimated Critical Paths Without Synthesis Tools.

Clock-rate pipelining enhancements

The following clock-rate pipelining enhancements are available:

* MATLAB Function blocks that do not have state can be pipelined at the clock rate.

* DUT output ports can be pipelined at the clock rate. In the Simulink HDL Workflow
Advisor Optimizations tab, enable the Allow clock-rate pipelining of DUT output
ports option, or set the ClockRatePipelineOutputPorts property to on.

» HDL Coder generates a MATLAB script that highlights blocks that are inhibiting clock-
rate pipelining. You can run the script by clicking the associated link the optimization
report.

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html

Speed and Area Optimizations

Partitioning for large multipliers to improve clock frequency
and DSP reuse on the FPGA

You can partition large multipliers by specifying a maximum multiplier bit width for your
design.

To specify the maximum multiplier bit width, in the HDL Workflow Advisor Optimization
tab, for Multiplier partitioning threshold, enter an integer value greater than or equal
to 2. See also MultiplierPartitioningThreshold.

Highlighting for blocks in the model that prevent retiming

With distributed pipelining, HDL Coder generates a MATLAB script that highlights blocks
that are inhibiting the optimization, and displays messages for highlighted blocks that
describe why the block is inhibiting the optimization. The script highlights blocks in your
original model and generated model.

To run the highlighting script, click the associated link in optimization report.

Script generation is on by default. You can disable script generation by setting the
DistributedPipeliningBarriers property to off with makehdl or hdlset param.

Resource sharing for adders and more control over shareable
resources

You can now specify the types of blocks or operations to share in the parts of your design
that have resource sharing enabled. You can enable or disable resource sharing for
adders, multipliers, atomic subsystems, and MATLAB Function blocks.

You can also specify minimum bit widths for shared adders and multipliers.
Speed and area optimizations for designs that use Unit Delay

Enabled, Unit Delay Resettable, and Unit Delay Enabled
Resettable

You can use speed and area optimizations in designs that contain Unit Delay Enabled,
Unit Delay Resettable, and Unit Delay Enabled Resettable blocks. For example, you can
use the following optimizations:

10-13

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/multiplierpartitioningthreshold.html

R2015a

10-14

* Resource sharing

* Streaming

» Distributed pipelining or retiming

* Input, output, and constrained output pipelining
* Clock-rate pipelining

Resource sharing for multipliers and adders with input data
types in different order

You can share multipliers or adders when their input ports have the same data types, but
in a different order. For example, you can share the following two multipliers:

* Multiplier A, with uint8 data on port X and uint16 data on port Y.
* Multiplier B, with uint16 data on port X and uint8 data on port Y.

Vector streaming for MATLAB code

When the loop streaming optimization is enabled in MATLAB code, HDL Coder applies the
streaming optimization to vector operations to minimize multiplexer and register usage.

The following types of vector operations benefit from vector streaming:
* Single vector operations.

For example:

y =u .*v;
* Chained vector operations.

For example:

t
y

* Chained vector operations across a persistent variable.

u .* v;
t + w;

For example:

persistent acc;
if isempty(acc)

Speed and Area Optimizations

acc = uintl6(zeros(size(u)));
end

10-15

R2015a

IP Core Generation and Hardware Deployment

10-16

Mac OS X platform support

You can install and run HDL Coder to generate code on the 64-bit Mac OS X platform.

AXl4-Stream interface generation for Xilinx Zynq IP core

You can generate an IP core with an AXI4-Stream interface when you target the Xilinx
Zynq-7000 platform and your synthesis tool is Xilinx Vivado.

For an example that shows how to generate an HDL IP core with an AXI4-Stream

interface, see Getting Started with AXI4-Stream Interface in Zynq Workflow.

Custom reference design and custom SoC board support
You can now define a custom SoC board or a custom reference design.

In the HDL Workflow Advisor, you can generate an IP core for a custom board, insert it
into a custom reference design, and generate an FPGA bit stream for the SoC hardware.

To learn more about defining and registering a custom board or custom reference design,
see:

* Board and Reference Design Registration System

* Register a Custom Board

* Register a Custom Reference Design

For an example, see Define and Register Custom Board and Reference Design for SoC
Workflow.

Automatic iterative optimization for IP core generation and
FPGA Turnkey workflows

After you achieve your clock frequency target using automatic iterative optimization, you
can generate a custom IP core or use the FPGA Turnkey workflow with the optimized
design.

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/board-and-reference-design-system.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/register-a-custom-board.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/register-a-custom-reference-design.html

IP Core Generation and Hardware Deployment

Speedgoat 10331-6 digital 1/0 interface target

When you target the Speedgoat 10331-6 board, in the HDL Workflow Advisor Target
platform interface table, you can select TTL I/0 Channel [0:15] to connect your
design interface to digital I/O pins.

IP core settings saved with model

For the IP core generation workflow, when you specify IP core settings, HDL Coder saves
the information with your model. The following HDL Workflow Advisor fields are saved
with the model as HDL block properties of the DUT block.

HDL Workflow Advisor field HDL Block Property

IP core name IPCoreName

IP core version IPCoreVersion

Additional source files IPCoreAdditionalFiles
Processor/FPGA synchronization ProcessorFPGASynchronization

For the DUT block, you can set and view IPCoreName, IPCoreVersion,
IPCoreAdditionalFiles, and ProcessorFPGASynchronization with the HDL Block
Properties dialog box or hdlset paramand hdlget param. To learn more about the
block properties, see Atomic Subsystem or Subsystem

For an example that shows how to configure target hardware settings in your model, see
Save Target Hardware Settings in Model.

Updates to supported software

HDL Coder has been tested with:

* Xilinx Vivado Design Suite 2014.2
o Altera Quartus II 14.0

For a list of supported third-party tools and hardware, see Supported Third-Party Tools
and Hardware.

10-17

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/atomicsubsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/gs/language-and-tool-version-support.html

R2014b

Version: 3.5
New Features
Bug Fixes

Compatibility Considerations

R2014b

Model and Architecture Design

11-2

Custom or legacy HDL code integration in the MATLAB to HDL
workflow

You can use a black box System object, hd1.BlackBox, to integrate custom HDL code
into your design in the MATLAB to HDL workflow. For example, you can integrate
handwritten or legacy HDL code that you previously generated from MATLAB code or a
Simulink model.

For an example that shows how to use hdl.BlackBox, see Integrate Custom HDL Code
Into MATLAB Design.

Model reference as DUT for code generation

You can directly generate code for a model reference, without placing it in a Subsystem
block. Previously, the code generation DUT had to be a Subsystem block.

Tunable parameter support for Gain and Constant blocks

The coder generates a top-level DUT port for each tunable parameter in your DUT that
you use as the Gain parameter in a Gain block, or the Constant value parameter in a
Constant block.

For details, see Generate Code For Tunable Parameters.

Code generation for Stateflow active state output

If you enable active state output to show child activity or leaf state activity for a Stateflow
block, the coder generates code for the active state output. See Active State Output.

Clock enable minimization for code generated from MATLAB
designs

You can minimize clock enable logic in your generated code by setting the
MinimizeClockEnab'les property of the coder.Hd1Config object to true, or by
enabling the Minimize clock enables option in the HDL Workflow Advisor.

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.blackbox-class.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/include-custom-hdl-code.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/include-custom-hdl-code.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/chart.html#bui6ced-1
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/coder.hdlconfig-class.html

Model and Architecture Design

For details, see Minimize Clock Enables.

HDL Block Properties dialog box shows only valid
architectures

For each block supported for code generation, the HDL Block Properties dialog box
Architecture drop-down list shows only the architectures that are valid for the block
based on mask parameter settings. Previously, all architectures were available for
selection regardless of mask parameter settings, and invalid settings caused errors
during code generation.

2-D matrix types in HDL generated for MATLAB matrices

When you have matrices in your MATLAB code, you can generate 2-D matrices in HDL
code. By default, the software generates HDL vectors with additional index computation
logic, which can use more area in the synthesized hardware than HDL matrices.

To generate 2-D matrix types in HDL in the MATLAB to HDL workflow:

* In the HDL Workflow Advisor, in the HDL Code Generation > Coding Style tab,
select Use matrix types in HDL code.

* At the command line, set the UseMatrixTypesInHDL property of the
coder.HdlConfig object to true.

Previously, 2-D matrix types could be generated in HDL for the Simulink MATLAB
Function block, but not in the MATLAB to HDL workflow.

11-3

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/minimize-clock-enables.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/coder.hdlconfig-class.html

R2014b

Block Enhancements

11-4

Code generation for HDL optimized FFT/IFFT System object
and HDL optimized Complex to Magnitude-Angle System
object and block

You can generate code for the dsp.HDLFFT and dsp.HDLIFFT System objects, Complex
to Magnitude-Angle HDL Optimized block, and dsp.ComplexToMagnitudeAngle
System object, which are available in the DSP System Toolbox.

Added features to HDL optimized FFT/IFFT blocks, including
reduced latency

For details of the updates to the FFT HDL Optimized and IFFT HDL Optimized blocks, see
the DSP System Toolbox release notes.

Compatibility Considerations

The FFT HDL Optimized and IFFT HDL Optimized blocks take fewer cycles to compute
one frame of output than in previous releases. For instance, for the default 1024-point
FFT, the latency in R2014a was 1589 cycles whereas in R2014b the latency is 1148. The
latency is displayed on the block icon.

If you have manually matched latency paths in models using the R2014a version of the
FFT HDL Optimized and IFFT HDL Optimized block, adjust the delay on those paths to
accommodate the lower FFT latency.

HDL Reciprocal block with Newton-Raphson Implementation

The HDL Reciprocal block is available with Simulink. Use this block to implement division
operations in models intended for HDL code generation. HDL Reciprocal has two Newton-
Raphson HDL implementations, ReciprocalNewton and
ReciprocalNewtonSingleRate. The new implementations use fewer hardware
resources and can achieve higher clock frequency than Divide or Math Function HDL
block implementations.

For the Divide and Math Function blocks, the names of the Newton-Raphson HDL block
implementations have changed:

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlcomplextomagnitudeangle-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/hdlreciprocal.html

Block Enhancements

* RecipNewton is now ReciprocalRsqrtBasedNewton.

* RecipNewtonSingleRate is now ReciprocalRsqrtBasedNewtonSingleRate.
If you open a model from a previous release, HDL Coder automatically maps the
RecipNewton and RecipNewtonSingleRate implementation names to

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate,
respectively.

To learn about the HDL Reciprocal block, see HDL Reciprocal.

To learn about the ReciprocalNewton and ReciprocalNewtonSingleRate
implementations, see HDL Reciprocal.

SerializerlD and DeserializerlD blocks

The following new blocks are available from the HDL Operations library for simulation
and code generation:
» SerializerlD

* Deserializer1D

Additional blocks supported for code generation

The following blocks are now supported for code generation:

* Backlash

* Bus assignment

* Coulomb and Viscous Friction

* DC Blocker

* Dead Zone/Dead Zone Dynamic
* Discrete PID Controller

* Hit Crossing

* HDL Reciprocal

» Serializer1D/Deserializer1D

* Wrap to Zero

11-5

https://www.mathworks.com/help/releases/R2014b/simulink/slref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/serializer1d.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/deserializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/backlash.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/busassignment.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/coulombandviscousfriction.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/dcblocker.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deadzone.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deadzonedynamic.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/discretepidcontroller.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hitcrossing.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/serializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deserializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/wraptozero.html

R2014b

11-6

Composite user-defined System object support

You can generate code for user-defined System objects that contain child user-defined

System objects.

System object output and update method support

You can generate code for the output and update methods in user-defined System objects
that inherit from the matlab.system.mixin.Nondirect class.

hdiram renamed to hdl.RAM

The hdlram System object has been renamed to hd1.RAM and is now available with
MATLAB. Previously, hd1ram required a Fixed-Point Designer license.

Compatibility Considerations

If you open a design that uses hdlram, the software displays a warning. For continued
compatibility with future releases, replace instances of hdlram with hdl.RAM.

Functionality Being Removed or Changed

is forwarded from
hdldemolib to
dsp.obselete.

block, which is
available in the DSP
System Toolbox.

Functionality What Happens Use This Compatibility
When You Use This |Functionality Considerations
Functionality Instead

HDL Streaming FFT |Still runs. The block |FFT HDL Optimized |This block will be

removed in a future
release.

HDL FFT

Still runs. This block
is renamed “HDL
Minimum Resource
FET”. It is forwarded
from hdldemolib
dsp.obselete.

FFT HDL Optimized
block, which is
available in the DSP
System Toolbox.

This block will be
removed in a future
release.

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html

Code Generation and Verification

Code Generation and Verification

Coding standards customization

If you enable HDL coding standard rule checking, you can enable or disable specific rules.
You can specify rule parameters. For example, you can specify the maximum nesting
depth for if-else statements. See HDL Coding Standard Customization.

HDL Designer script generation
You can now generate a lint tool script for Mentor Graphics® HDL Designer.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL
Lint Tool Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL
Lint Tool Script.

Traceable names for RAM blocks and port signals

When you generate code for a RAM block from the HDL Operations library, the name in
the generated code reflects the name in the model. Similarly, port signal names in the
generated code are inherited from your model.

For each RAM block of a particular size, the coder generates an HDL module. The module
file name reflects the name and size of the RAM block or persistent variable in your
design.

For example, suppose DPRAM foo is the name of a Dual Port RAM block in your model.
The generated code for the instance is:

u_DPRAM foo : DualPortRAM Wrapper 256x8b
The RAM module name and wrapper name also match the name of the Simulink block:

DualPortRAM 256x8b.vhd
DualPortRAM Wrapper 256x8b.vhd

11-7

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlcodingstandardcustomization-properties.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

R2014b

11-8

for-generate statements in generated VHDL code

When you generate VHDL code for block architectures that use replicated structures, the
coder generates for-generate statements for better readability. For example, VHDL
code generated for the Add and Product blocks uses for-generate statements.

Validation model generation regardless of delay balancing
results

When you enable the Generate validation model option, HDL Coder generates the
validation model even if delay balancing is unsuccessful. In previous releases, if delay
balancing was unsuccessful, the coder did not generate the validation model.

Speed and Area Optimizations

Speed and Area Optimizations

Clock-rate pipelining to optimize timing in multi-cycle paths

In the Simulink to HDL workflow, for speed optimizations that insert pipeline registers,
the coder identifies multi-cycle paths in your design and inserts pipeline registers at the
clock rate instead of the data rate. When the optimization is in a slow-rate region or multi-
cycle path of the design, clock rate pipelining enables the software to perform
optimizations without adding extra latency, or by adding minimal latency. It also enables
optimizations such as pipelining and floating-point library mapping inside feedback loops.

Clock-rate pipelining is enabled by default. You can disable clock-rate pipelining in one of
the following ways:

* In the HDL Workflow Advisor, in the HDL Code Generation > Set Code Generation
Options > Set Advanced Options > Optimization tab, select Clock-rate
pipelining.

* At the command line, use makehdl or hdlset param to set the
ClockRatePipelining parameter to off.

For details, see Clock-Rate Pipelining.
RAM mapping for user-defined System object private
properties

Private properties in user-defined System objects can map to RAM. For details, see
Implement RAM Using a Persistent Array or System object Properties.

Highlighting for feedback loops that inhibit optimizations

You can generate a MATLAB script that highlights feedback loops that may inhibit delay
balancing or speed and area optimizations. The script highlights feedback loops in your
original model and generated model.

You can also save the highlighting information in a MATLAB script.

For details, see Find Feedback Loops.

11-9

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/implement-ram-using-matlab-code.html#bt3f6yo-1
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/find-feedback-loops.html

R2014b

11-10

Optimizations available for conditional-execution subsystems

The following optimizations are now supported for enabled subsystems and triggered
subsystems:

* Resource sharing

* Streaming

* Constrained overclocking

» Floating-point library mapping

* Hierarchy flattening

* Delay balancing

* Automatic iterative optimization

Variable pipelining in conditional MATLAB code

HDL code generation now supports variable pipelining inside conditional MATLAB code
for the MATLAB to HDL workflow and the MATLAB Function block in the Simulink to HDL
workflow.

Optimizations available with UseMatrixTypesinHDL for
MATLAB Function block

When you enable 2-D matrix types in the generated HDL code, for the MATLAB to HDL
workflow and Simulink to HDL workflow, speed and area optimizations are available.
Previously, for the MATLAB Function block, the UseMat rixTypesInHDL parameter was
incompatible with speed and area optimizations.

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

Support for Xilinx Vivado

The HDL Coder software is now tested with Xilinx Vivado Design Suite 2013.4. You can:

* Generate a custom IP core for the Zyng-7000 platform and automatically integrate it
into a Vivado project for use with IP Integrator.

* Program FPGA hardware supported by Vivado using the HDL Workflow Advisor.

* Perform back-annotation analysis of your design.
* Generate synthesis scripts.

IP core generation for Altera SoC platform
You can generate a custom IP core with an AXI4 interface for the Altera SoC platform.

HDL Coder can also insert your custom IP core into a predefined Qsys project to target
the Altera Cyclone V SoC development kit or Arrow SoCKit development board. The coder
can connect the IP core to the ARM processor via the AXI interface within the project.

The software provides add-on support for Altera SoC hardware via the HDL Coder
Support Package for Intel SoC Devices. For more details, see HDL Coder Support Package
for Altera SoC Platform.

Custom HDL code for IP core generation from MATLAB

You can integrate custom HDL code, such as handwritten or legacy HDL code, into your
design in the MATLAB to HDL IP core generation workflow. Use one or more
hdl.BlackBox System objects in your MATLAB design, and add the HDL source files in
the Additional source files field.

To learn how to use the Additional source files field, Generate a Board-Independent IP
Core from MATLAB.

Target platform interface mapping information saved with
model

For the IP core generation workflow, FPGA turnkey workflow, or Simulink Real-Time
FPGA 1/0 workflow, when you map each of your DUT top-level ports to a platform

11-11

https://www.mathworks.com/help/releases/R2014b/supportpkg/alterasochdlcoder/index.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/alterasochdlcoder/index.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-a-custom-ip-core-from-matlab.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-a-custom-ip-core-from-matlab.html

R2014b

interface, HDL Coder saves the interface mapping information as port properties in your
model. The coder also saves workflow and target platform information with the model.

For DUT Inport and Outport blocks, you can set and view I0Interface and
IOInterfaceMapping with the HDL Block Properties dialog box or hdlset param and
hdlget param.

For an example that shows how to configure target platform interface settings, see

https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-
hardware-settings-in-model.html.

Documentation installation with hardware support package
Starting in R2014b, each hardware support package that you install comes with its own

documentation. For a list of support packages available for HDL Coder, with links to
documentation, see HDL Coder Supported Hardware.

11-12

https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/gs/hdl-coder-supported-hardware.html

R2014a

Version: 3.4
New Features
Bug Fixes

Compatibility Considerations

R2014a

Model and Architecture Design

HDL block library in Simulink

The HDL Coder library, which contains blocks supported for HDL code generation, is
available in Simulink. When you create a model using the HDL Coder library, the blocks
are preconfigured with settings suitable for code generation.

The HDL Operations library, previously called hdldemolib, is available in Simulink as
part of the HDL Coder library. Previously, the HDL Operations blocks were available only

with an HDL Coder license.

To view the HDL Operations block library from the Simulink Library Browser, open the

HDL Coder folder and select HDL Operations.

HE Simulink Library Browser
File Edit VYiew Help

I:Q-_L Tj »» Enter search term

Libraries

ME

4 HDL Coder
Commonly Used Blocks
Discontinuities
Discrete

Logic and Bit Operations
Lookup Tables
Math Operations
Model Verification
ModelWide Utilities
> Ports & Subsystems
Signal Attributes
Signal Routing
Sinks
Sources
User-Defined Functions

> HOL Verifier

4 (LI

HDL Operations

m

Library: HDL Coder/HDL Operations

b

5

Cona

¢ Bit Concat

b Bit Shift

it

Cusl Rate Dual
Fort RAM

Simple Dual
Port RAM

=N e >

Search Results: (none) | Freguently Used

Faciaon Bit Reduce
At Bit Slice
cam HDL Counter

Single Port
RAM

Fosam

Bit Rotate

Dual Port RAM

HDL FIFC

Showing: HDL Coder/HDL Operations

12-2

Model and Architecture Design

Persistent keyword not needed in HDL code generation

If your MATLAB code includes a System object that does not have states, you do not need
to include the persistent keyword for HDL code generation.

For details, see Limitations of HDL Code Generation for System Objects.

Negative edge clocking

You can clock your design on the falling edge of the clock.

To generate code that clocks your design on the negative edge of the clock, in the
Configuration Parameters dialog box, for HDL Code Generation > Global Settings >

Clock Edge, select Falling edge.

Alternatively, at the command line, set the ClockEdge property to 'Falling' using
makehdl or hdlset param.

For details, see ClockEdge.

Bidirectional port specification

You can specify bidirectional ports for Subsystem blocks that have Architecture set to
BlackBox. In the FPGA Turnkey workflow, you can use the bidirectional ports to connect
to external RAM.

In the generated code, the ports have the Verilog or VHDL inout keyword. However,
Simulink does not support bidirectional ports, so you cannot simulate the bidirectional
behavior in Simulink.

To learn more, see Specify Bidirectional Ports.

Port names in generated code match signal names

You can use the Icon display block parameter on Inport and Outport blocks to make your
code more readable. When you set the Icon display parameter to Signal name, Port
number, or Port number and signal name, the port names in the generated code
match the display names of the connected signals.

12-3

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/system-objects.html#bteb8dr-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/clockedge.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/customizing-the-generated-interface.html#buayidt-1

R2014a

12-4

ModelReference default architecture for Model block

The Model block default architecture is ModelReference. Previously, the default
architecture was BlackBox.

Compatibility Considerations

When you open a model created in a previous release, a Model block in that design
changes architecture from BlackBox to ModelReference if all the HDL block properties
are set to default settings.

To keep the BlackBox architecture for Model blocks, use one of the following
workarounds:

* Open the model using the current release, specify the BlackBox architecture for the
affected Model blocks, and save the model.

* Open the model using a previous release, specify a nondefault setting for each Model
block, and save the model.

Reset for timing controller

You can generate a reset port for the timing controller, which generates the clock, clock
enable, and reset signals in a multirate DUT.

To generate a reset port for the timing controller, set the TimingControllerArch
property to resettable using makehdl or hdlset param.

To learn more, see Generate Reset for Timing Controller.

Reset port optimization

The coder does not generate a top-level reset port when the code generation subsystem
does not contain resettable delays or blocks.

To generate code without a top-level reset port:

* Set the ResetType HDL block parameter to none for all blocks in the DUT with the
ResetType parameter.

* For MATLAB Function blocks in your DUT, do not enable block level HDL
optimizations, which insert resettable registers.

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-reset-for-timing-controller.html

Model and Architecture Design

For details, see ResetType.

Functionality Being Removed or Changed

You cannot save a model that uses an attached control file to apply HDL model or block

parameters.

Since the R2010a release, if you open a model that uses a control file, the software shows
a warning, and updates the model by applying the HDL parameters to your model and
removing the control file. For continued compatibility with future releases, save the

updated model.

Functionality

What Happens
When You Use This
Functionality

Use This Instead

Compatibility
Considerations

hdlapplycontrolf
ile

Still runs

hdlset param,
hdlget param

Do not use control
files for model or
block configuration.
Instead, use
hdlset paramand
hdlget param to
configure your
model.

hdlnewblackbox

Still runs

hdlset param,
hdlget param

Do not use control
files for model or
block configuration.
Instead, use
hdlset paramand
hdlget param to
configure your
model.

12-5

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlapplycontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlapplycontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewblackbox.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html

R2014a

12-6

Functionality

What Happens
When You Use This
Functionality

Use This Instead

Compatibility
Considerations

hdlnewcontrol

Still runs

hdlset param,
hdlget param

Do not use control
files for model or
block configuration.
Instead, use
hdlset paramand
hdlget param to
configure your
model.

hdlnewcontrolfil
e

Still runs

hdlset param,
hdlget param

Do not use control
files for model or
block configuration.
Instead, use
hdlset paramand
hdlget param to
configure your
model.

hdlnewforeach

Still runs

hdlset param,
hdlget param

Do not use control
files for model or
block configuration.
Instead, use
hdlset paramand
hdlget param to
configure your
model.

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrol.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewforeach.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html

Block Enhancements

Block Enhancements

Code generation for enumeration data types
You can generate code for Simulink, MATLAB, or Stateflow enumerations within your
design. In the current release, you cannot generate code if your design uses enumerations

at the top-level DUT ports.

To learn more about code generation support for enumerations in Simulink designs, see
Enumerations.

To learn more about code generation support for enumerations in MATLAB designs, see
Data Types and Scope.

Code generation for FFT HDL Optimized and IFFT HDL
Optimized blocks

You can generate code for the FFT HDL Optimized and IFFT HDL Optimized blocks,
which are available in the DSP System Toolbox.

Bus support improvements

You can generate code for designs that contain:

* DUT ports connected to buses.
* Buses that are not defined with a bus object.

e Nonvirtual buses.

To learn more, see Buses.

Variant Subsystem support for configurable models

You can generate code for designs containing Variant Subsystem blocks. Using Variant
Subsystem blocks enables you to explore and generate code for different component
implementations and design configurations.

12-7

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxw-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/variables-and-constants.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxf

R2014a

12-8

Trigger signal can clock triggered subsystems

You can generate code that uses the trigger signals in Triggered Subsystem blocks as
clocks. Using triggers as clocks enables you to partition your design into different clock
regions in the generated code, but can cause a timing mismatch during testbench
simulation.

For details, see Use Trigger As Clock in Triggered Subsystems.

2-D matrix types in code generated for MATLAB Function
block

You can now generate 2-D matrices in HDL code when you have MATLAB matrices in a
MATLAB Function block. By default, the software generates HDL vectors with additional
index computation logic, which can use more area in the synthesized hardware than HDL
matrices.

For details, see UseMatrixTypesInHDL.

64-bit data support

You can generate code for uint64 and int64 data types in MATLAB code, both in the
MATLAB-to-HDL workflow and for the MATLAB Function block in the Simulink-to-HDL
workflow.

MATLAB Function block ports must use sfix64 or ufix64 types for 64-bit data, because
uint64 and int64 are not yet supported in Simulink.

HDL code generation from MATLAB System block

The MATLAB System block, which you use to include System objects in Simulink models,
now supports HDL code generation.

For details, see MATLAB System.

System object methods in conditional code

HDL code generation now supports System object step method calls inside conditional
code regions.

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/use-trigger-as-clock-in-triggered-subsystems.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bua8xle-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/matlabsystem.html

Block Enhancements

Dual Rate Dual Port RAM block

A new block, Dual Rate Dual Port RAM, is available for simulation and code generation.
The Dual Rate Dual RAM supports two simultaneous read or write accesses at two
Simulink rates. When you generate code, the Dual Rate Dual Port RAM block infers a
dual-clock dual-port RAM in most FPGAs.

To view the block, open the HDL Operations block library.

din_A
addr_A dout_A D
we_A
din_B
addr_B dout_B P

we_B

=EE VI VEVIEVIEVIAY.

ual Rate Dual Port RAM

For more information about the block, see Dual Rate Dual Port RAM. For HDL code
generation details, see Dual Rate Dual Port RAM.

Additional blocks and block implementations supported for
code generation

The following blocks and block implementations are now supported for code generation:

e Sine, Cosine
¢ Enumerated Constant

* Delay with External reset set to Level.

12-9

https://www.mathworks.com/help/releases/R2014a/simulink/slref/dualratedualportram.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/dualratedualportram.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/cosine.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/enumeratedconstant.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/delay.html

R2014a

-1
p Al ?

Delay

* Multiport Switch with enumerated type at control input.

You can set Data port order to Specify indices, and enter enumeration values for
the Data port indices. For example, you can connect the Enumerated Constant block
to the Multiport Switch control port and use the enumerated types as data port

indices.
HDLStatusEnum_Ready > :
Read
Enumerated Y
Constant Waiting >
»—-=a
* Valid
0
Multiport
Switch

The HDL FIFO block no longer requires a DSP System Toolbox license. The HDL FIFO
block is available in the HDL Operations library.

12-10

https://www.mathworks.com/help/releases/R2014a/simulink/slref/multiportswitch.html

Code Generation and Verification

Code Generation and Verification

Errors instead of warnings for blocks not supported for code
generation

If your design contains blocks or block architectures that are not supported for HDL code
generation, the software shows an error and does not generate code. Previously, the
software showed a warning, but still generated code, with black box interfaces for the
unsupported blocks or block architectures.

Compatibility Considerations

If you want to generate code for models containing unsupported blocks or block
architectures, you must Comment out the unsupported blocks in Simulink.

Ascent Lint script generation
You can now generate a lint tool script for Real Intent Ascent Lint.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL
Lint Tool Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL
Lint Tool Script.

Incremental code generation and synthesis

In the Simulink-to-HDL workflow, and hardware-software codesign workflow, HDL Coder
does not rerun code generation or synthesis tasks unless you have changed your model or
other hardware-related project settings. You can save time when you want to regenerate
HDL code or FPGA programming files without changing your model, code generation
options, or hardware target.

Similarly, in the hardware and software codesign workflow, when you modify the

embedded software part of your design without changing the hardware part, HDL Coder
does not rerun HDL code generation or synthesis tasks.

12-11

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

R2014a

12-12

When the coder skips code generation or synthesis tasks, the HDL Workflow Advisor
shows a message. The message contains a link you can click to force the coder to rerun
the task.

Automatic C compiler setup

In earlier releases, to set up a compiler to accelerate test bench simulation for MATLAB
algorithms, you were required to run mex -setup. Now, the code generation software
automatically locates and uses a supported installed compiler. You can use mex -setup
to change the default compiler. See Changing Default Compiler.

https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html

Speed and Area Optimizations

Speed and Area Optimizations

RAM mapping scheduler improvements

The RAM mapping scheduling algorithm now minimizes overclocking when your MATLAB
code maps to multiple RAMs. In addition, multiple persistent variables with cyclic read-
write dependencies can now map to RAM.

Performance-prioritized retiming

When you enable distributed pipelining, you can specify a priority for Distributed
pipelining priority: Numerical integrity, or Performance. In the previous release, the
distributed pipelining algorithm prioritized numerical integrity.

For details, see DistributedPipeliningPriority.

Retiming without moving user-created design delays

You can use the Preserve design delays option to prevent distributed pipelining from
moving design delays in your Simulink or MATLAB design. If you specify Preserve
design delays, distributed pipelining does not move the following design delays:

* Persistent variable in MATLAB code, a MATLAB Function block, or a Stateflow Chart
» Unit Delay block

* Integer Delay block

* Memory block

* Delay block from DSP System Toolbox

* dsp.Delay System object from DSP System Toolbox

For details, see PreserveDesignDelays.

Resource sharing factor can be greater than number of
shareable resources

With the resource sharing area optimization, the software shares the maximum number of
shareable resources within your overclocking constraints, even if the sharing factor that

12-13

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/distributedpipeliningpriority.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/preservedesigndelays.html

R2014a

12-14

you specify is not an integer divisor of the number of shareable resources. This capability
can increase resource sharing, and therefore reduce area.

For example, if your subsystem has 11 multipliers, and you set SharingFactor to 4, the
coder can implement your design with 3 multipliers: 2 multipliers shared 4 ways, and 1
multiplier shared 3 ways. In the previous release, the coder implemented the design with
5 multipliers: 2 multipliers shared 4 ways, and 3 unshared multipliers. The resulting
implementation requires overclocking by a factor of 4.

To learn more, see Resource Sharing For Area Optimization.

Reduced area with multirate delay balancing

When the coder balances delays in a multirate model, it now inserts a single delay at the
transition from a much faster rate to a slow rate, and passes through the data samples
aligned with the slow rate. Previously, the coder inserted a large number of delays at the
faster rate.

Serializer-deserializer and multiplexer-demultiplexer
optimization
The coder removes back-to-back serializer-deserializer and multiplexer-demultiplexer

pairs introduced by the implementation of optimizations such as resource sharing and
streaming. This results in more area-efficient HDL code.

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

ZC706 target for IP core generation and integration into Xilinx
EDK project
You can target the Xilinx Zyng-7000 AP ZC706 Evaluation Board for IP core generation

and Xilinx EDK project integration. After you install the HDL Coder Support Package for
Xilinx Zyng-7000 Platform, ZC706 hardware support is available.

Automatic iterative clock frequency optimization

You can use the hdlcoder.optimizeDesign function to achieve either your target clock
frequency or a maximum clock frequency. Based on your clock frequency goal and target
device, the software iteratively generates and synthesizes code, retrieves back annotation
data, and inserts delays into your Simulink model to break the critical path.

To learn more, see Automatic Iterative Optimization.

Synthesis attributes for multipliers

You can now generate code that includes synthesis attributes to specify multipliers in
your design that you want to map to DSPs or logic in hardware. If you specify resource
sharing, the software does not share multipliers that have different synthesis attribute
settings.

For Xilinx targets, the generated code uses the use dsp48 attribute. For Altera targets,
the generated code uses the multstyle attribute.

For details, see DSPStyle.

Custom HDL code for IP core generation

You can integrate custom HDL code into your design in the Simulink-to-HDL IP core
generation workflow. You can integrate handwritten or legacy HDL code into an IP core
that you generate from a Simulink model.

To include custom HDL code in your IP core design, use one or more Model or Subsystem
blocks with Architecture set to BlackBox. Use the Additional source files field in the
HDL Workflow Advisor to specify corresponding HDL file names.

12-15

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/automatic-iterative-optimization.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bubc5wb-1

R2014a

12-16

For details of the IP core generation workflow, see Generate a Custom IP Core from
Simulink.

Synthesis and simulation tool addition and detection after
opening HDL Workflow Advisor

In the Simulink-to-HDL workflow, you can set up and add a synthesis tool without having
to close and reopen the HDL Workflow Advisor. In the HDL Workflow Advisor, in the Set
Target > Set Target Device and Synthesis Tool task, click Refresh to detect and add
the new tool.

You can also set up and add a simulation tool after creating a MATLAB-to-HDL project
without having to close and reopen the project. In the HDL Workflow Advisor, in the HDL
Verification > Verify with HDL Test Bench task, click Refresh list to detect and add
the new tool.

xPC Target is Simulink Real-Time

The xPC Target FPGA 1/0O workflow is now called the Simulink Real-Time FPGA I/0
workflow. This change reflects the xPC Target™ product name change to Simulink Real-
Time. For details about the product name change, see New product that combines the
functionality of xPC Target and xPC Target Embedded Option.

Updates to supported software

HDL Coder has been tested with:

* Xilinx ISE 14.6
e Altera Quartus II 13.0 SP1

For a list of supported third-party tools and hardware, see Supported Third-Party Tools
and Hardware.

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-a-custom-ip-core.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-a-custom-ip-core.html
https://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1
https://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html

R2013b

Version: 3.3
New Features
Bug Fixes

Compatibility Considerations

R2013b

Model and Architecture Design

Model reference support and incremental code generation

You can generate HDL code from referenced models using the Model block. To use a
referenced model in a subsystem intended for code generation, in the HDL Block
Properties dialog box, set Architecture to ModelReference.

The coder incrementally generates code for referenced models according to the
Configuration Parameters dialog box > Model Referencing pane > Rebuild

options. However, the coder treats If any changes detected and If any changes in
known dependencies detected as the same. For example, if you set Rebuild to either If
any changes detected or If any changes in known dependencies detected, the
coder regenerates code for referenced models only when the referenced models have
changed.

To learn more, see Model Referencing for HDL Code Generation.

Code generation for subsystems containing Altera DSP
Builder blocks

You can now generate HDL code for subsystems that include blocks from the Altera DSP
Builder Advanced Blockset.

For details, see Create an Altera DSP Builder Subsystem.

To see an example that shows HDL code generation for an Altera DSP Builder subsystem,
see Using Altera DSP Builder Advanced Blockset with HDL Coder.

Module or entity generation for local functions in MATLAB
Function block

You can now generate instantiable Verilog modules or VHDL entities when you generate
code for local functions in a MATLAB Function block, or for functions on your path that

are called from within a MATLAB Function block.

To enable this feature, in the HDL Block Properties dialog box, set InstantiateFunctions
to on. For details, see InstantiateFunctions.

13-2

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/block-implementation-parameters.html#bt3rv73

Model and Architecture Design

Reset port optimization

The coder no longer generates a top level reset port when the ResetType HDL block
parameter is set to none for all RAM blocks in the DUT.

In previous releases, the generated code included a reset port even when the RAM reset
logic was suppressed.

Load constants from MAT-files

HDL Coder now generates code for the coder. load function, which you can use to load
compile-time constants from a MAT-file. You no longer have to manually type in constants
that were stored in a MAT-file.

To learn how to use coder. load for HDL code generation, see Load constants from a
MAT-File.

13-3

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/load-constants-from-a-mat-file.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/load-constants-from-a-mat-file.html

R2013b

Block Enhancements

13-4

Code generation for user-defined System objects

You can now generate HDL code from user-defined System objects written in MATLAB.
System objects enable you to create reusable HDL IP.

The step method specifies the HDL implementation behavior. It is the only System object
method supported for HDL code generation.

User-defined System objects are not supported for automatic fixed-point conversion.

To learn how to define a custom System object, see Generate Code for User-Defined
System Objects.

Bus signal inputs and outputs for MATLAB Function block and
Stateflow charts

MATLAB Function blocks and Stateflow charts with bus signal inputs or outputs are now
supported for code generation. The bus must be defined with a bus object.

HDL Counter has specifiable start value

You can now specify a start value for the HDL Counter block. When the counter initializes
or wraps around, it counts from the specified start value.

Maximum 32-bit address for RAM

For the Single Port RAM block, Simple Dual Port RAM block, Dual Port RAM block, and
hdlram System object, the maximum address width is now 32 bits. For more information,
see:

* hdlram

* RAM Blocks

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-code-for-user-defined-system-objects.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-code-for-user-defined-system-objects.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/hdlramclass.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/ram-blocks.html

Block Enhancements

Removing HDL Support for NCO Block

HDL support for the NCO block will be removed in a future release. Use the NCO HDL
Optimized block instead.

Compatibility Considerations

In the current release, if you generate HDL code for the NCO block, a warning message
appears. In a future release, any attempt to generate HDL code for the NCO block will
cause an error.

13-5

https://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html

R2013b

Code Generation and Verification

13-6

Coding style improvements according to industry standard
guidelines

The coder now follows these industry standard coding style guidelines when generating
HDL code:
* Division by a power of 2 becomes a bit shift operation.

* Constants with double data types in the original design are automatically converted to
their canonical fixed-point types as long as there is no loss of precision.

* SystemVerilog keywords are treated as reserved words.

* Intermediate signals and latches are reduced when HDLCodingStandard is set to
Industry.

* Real data types generate warnings, except when you target an FPGA floating-point
library.

Coding standard report target language enhancement and
text file format

HDL Coder now generates the coding standard report according to target language.
Coding standard errors, warnings, and messages that do not pertain to your target
language no longer appear in the report.

The coding standard report is generated in text file format, in addition to HTML format,
to enable easier comparison between multiple runs.

Ul for SpyGlass, Leda, and custom lint tool script generation

You can now use the Ul to generate Atrenta SpyGlass, Synopsys® Leda, or custom lint
scripts in the Simulink-to-HDL and MATLAB-to-HDL workflows.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL
Lint Tool Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL
Lint Tool Script.

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

Code Generation and Verification

File I/O to read test bench data in VHDL and Verilog

You can now specify the generated VHDL or Verilog test bench to use file I/O to read
input stimulus and output response data during simulation, instead of including data
constants in the test bench code. Doing so improves scalability for designs requiring long
simulations and large test vectors.

This feature is available for Simulink-to-HDL and MATLAB-to-HDL code generation.

To learn about test bench generation with file I/O in the Simulink-to-HDL workflow, see
Generate Test Bench With File I/O.

To learn about test bench generation with file I/O in the MATLAB-to-HDL workflow, see
Generate Test Bench With File I/O.

Floating point for FIL and HDL cosimulation test bench
generation

With the R2013b release, HDL Coder HDL workflow advisor for Simulink supports double
and single data types on the DUT interface for test bench generation using HDL Verifier.

Fixed-point file name change

The suffix for generated fixed-point files is now fixpt. Previously, the suffix was
FixPt.

Compatibility Considerations
If you have MATLAB-to-HDL projects from previous releases that depend on the

generated fixed-point file name, you can use the FixPtFileNameSuffix property to set
the suffix to FixPt.

13-7

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/test-bench-generation-with-file-io.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-test-bench-with-file-io.html

R2013b

Speed and Area Optimizations

13-8

RAM inference in conditional MATLAB code

The coder now infers RAM from persistent array variables accessed within conditional
statements, such as if-else or switch-case statements, for both MATLAB designs and
MATLAB Function blocks in Simulink.

If you have nested conditional statements, the persistent array variables can map to RAM
if accessed in the topmost conditional statement, but cannot map to RAM if accessed in a
lower level nested conditional statement.

Coding style for improved ROM mapping

The coder now automatically inserts a no-reset register at the output of a constant matrix
access. Many synthesis tools infer a ROM from this code pattern. For details, see Map
Matrices to ROM.

Pipeline registers between adder or multiplier and rounding
or saturation logic

The coder now places a pipeline register between an adder or multiplier and associated
rounding or saturation logic when distributing pipelining registers. This register
placement can significantly improve clock frequency.

Distributed pipelining improvements with loop unrolling in
MATLAB Function block

When you enable distributed pipelining for a MATLAB Function block without persistent
variables, set the Loop Optimization option to Unrolling for better timing results.

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/map-matrices-to-rom.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/map-matrices-to-rom.html

IP Core Generation and Hardware Deployment

IP Core Generation and Hardware Deployment

IP core integration into Xilinx EDK project for ZC702 and
ZedBoard

When you generate an IP core from your MATLAB design or Simulink model, HDL Coder
can automatically insert the IP core into a predefined Xilinx ZC702 or ZedBoard EDK
project for the Zyng-7000 platform. The coder automatically connects the IP core to the
AXI interface and ARM processor in the EDK project.

For an overview of the hardware and software codesign workflow, see Hardware and
Software Codesign Workflow.

For an example that shows how to deploy your MATLAB design in hardware and software
on the Zyng-7000 platform, see Getting Started with HW/SW Co-design Workflow for
Xilinx Zynq Platform.

For an example that shows how to deploy your Simulink model in hardware and software
on the Zyng-7000 platform, see Getting Started with HW/SW Co-design Workflow for
Xilinx Zynq Platform.

FPGA Turnkey and IP Core generation in MATLAB to HDL
workflow

You can now generate a custom IP core with an AXI4-Lite or AXI4-Stream Video interface
from a MATLAB design. You can integrate the generated IP core into a larger design in
your Xilinx EDK project.

You can also automatically program an Altera or Xilinx FPGA development board with
code generated from your MATLAB design, using the HDL Workflow Advisor FPGA
Turnkey workflow. To learn how to use this workflow, see Program Standalone FPGA with
FPGA Turnkey Workflow and mlhdlc_tutorial turnkey led blinking.

Previously, IP core generation and FPGA Turnkey were available only for the Simulink to
HDL workflow.

13-9

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/program-standalone-fpga-with-fpga-turnkey-workflow-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/program-standalone-fpga-with-fpga-turnkey-workflow-1.html

R2013b

13-10

Synthesis tool addition and detection after MATLAB-to-HDL
project creation

You can now set up and add a synthesis tool after creating a MATLAB-to-HDL project
without having to close and reopen the project. In the HDL Workflow Advisor, in the Set
Code Generation Target task, click Refresh list to detect and add the new tool. For
details, see Add Synthesis Tool for Current MATLAB Session.

Synthesis script generation for Microsemi Libero and other
synthesis tools

You can now generate a Microsemi Libero or custom synthesis tool script during
Simulink-to-HDL and MATLAB-to-HDL code generation.

In the MATLAB-to-HDL workflow, you can now generate synthesis tool scripts customized
for Xilinx ISE, Microsemi Libero, Mentor Graphics Precision, Altera Quartus II, and
Synopsys Synplify Pro®. The coder populates the scripts with default options, but you can
further customize the scripts as needed. In previous releases, you had to enter the
synthesis tool commands manually. For details, see Generate Synthesis Scripts.

Floating-point library mapping for mixed floating-point and
fixed-point designs

When you enable FPGA target-specific floating-point library mapping, you can now
generate code from a design containing both floating-point and fixed-point components.
The coder determines whether to map to a floating-point IP block based on the data types
in your model.

xPC Target FPGA I/O workflow separate from FPGA Turnkey
workflow

The HDL Workflow Advisor target workflow that programs Speedgoat boards to run with
xPC Target is now called the xPC Target FPGA I/0O workflow. This workflow is separate
from the FPGA Turnkey workflow for Altera and Xilinx FPGA boards.

For an example that shows how to use the xPC Target FPGA I/O workflow, see Generate
Simulink Real-Time Interface for Speedgoat Boards.

https://www.mathworks.com/help/releases/R2013b/hdlcoder/gs/toolbox-setup.html#btp_neo
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-synthesis-scripts.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html

IP Core Generation and Hardware Deployment

AXM-A75 AD/DA module for Speedgoat 10331 FPGA board

The AXM-A75 AD/DA module for Speedgoat 10331 FPGA board is now available as a
hardware target for the xPC Target FPGA 1/O workflow.

Speedgoat 10321 and 10321-5 target hardware support

The xPC Target FPGA I/O workflow now supports the Speedgoat 10321 board and its
variant, Speedgoat 10321-5, as separate hardware targets. Previously, the name of the
10321-5 board was 10325.

To learn more about the I0321 and 10321-5 boards, see Speedgoat 10321.

Support package for Xilinx Zynq-7000 platform

Generate a custom IP core for the ZC702 or ZedBoard on the Xilinx Zyng-7000 platform
using the IP core generation workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to IP Core Generation.
For Platform, select Get more.
Use Support Package Installer to install the HDL Coder Support Package for Xilinx
Zyng-7000 Platform.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to IP Core Generation.
For Target platform, select Get more.

Use Support Package Installer to install the HDL Coder Support Package for Xilinx
Zynq-7000 Platform.

Support package for Altera FPGA boards

Program Altera FPGA boards with your generated HDL code using the FPGA Turnkey
workflow.

13-11

https://www.mathworks.com/help/releases/R2013b/xpc/io_ref/speedgoatio321.html

R2013b

13-12

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to FPGA Turnkey.
For Platform, select Get more boards.

3 Use Support Package Installer to install the HDL Coder Support Package for Altera
FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

1 [n the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to FPGA Turnkey.
For Target platform, select Get more boards.

3 Use Support Package Installer to install the HDL Coder Support Package for Altera
FPGA Boards.

Compatibility Considerations

Previous versions of HDL Coder had built-in support for Altera FPGA boards in the FPGA
Turnkey workflow. The current version of HDL Coder does not have built-in support for
Altera FPGA boards. To get support for Altera FPGA boards, install the HDL Coder
Support Package for Altera FPGA Boards.

Support package for Xilinx FPGA boards

Program Xilinx FPGA boards with your generated HDL code using the FPGA Turnkey
workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set
Workflow to FPGA Turnkey.
For Platform, select Get more boards.

3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx
FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

IP Core Generation and Hardware Deployment

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool task, set Target workflow to FPGA Turnkey.

For Target platform, select Get more boards.

Use Support Package Installer to install the HDL Coder Support Package for Xilinx
FPGA Boards.

Compatibility Considerations

Previous versions of HDL Coder had built-in support for Xilinx FPGA boards in the FPGA
Turnkey workflow. The current version of HDL Coder does not have built-in support for
Xilinx FPGA boards. To get support for Xilinx FPGA boards, install the HDL Coder Support
Package for Xilinx FPGA Boards.

Additional FPGA board support for FIL verification, including
Xilinx KC705 and Altera DSP Development Kit, Stratix V
edition

Several FPGA boards have been added to the HDL Verifier FPGA board support packages,

including Xilinx KC705 and Altera DSP Development Kit, Stratix V edition. You can select
these boards for FIL verification using the HDL workflow advisor for Simulink.

13-13

R2013a

Version: 3.2
New Features
Bug Fixes

Compatibility Considerations

R2013a

Model and Architecture Design

14-2

Code generation for System objects in a MATLAB Function
block

You can now generate code from a MATLAB Function block containing System objects.

For details, see System Objects under MATLAB Language Support, in MATLAB Function
Block Usage.

Output folder structure includes model name

When you generate code for a subsystem within a model, the output folder structure now
includes the model name.

For example, if you generate code for a subsystem in a model, Mymode, the output folder
is hdlsrc/Mymodel.

Compatibility Considerations

If you have scripts that depend on a specific output folder structure, you must update
them with the new structure.

Prefix for module or entity name

You can now specify a prefix for every module or entity name in the generated HDL code.
This feature helps you to avoid name clashes when you want to have multiple instances of
the HDL code generated from the same block. For details, see ModulePrefix.

https://www.mathworks.com/help/releases/R2013a/hdlcoder/matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/moduleprefix.html

Model and Architecture Design

Functionality being removed

RAMStyle Error RAMArchitecture The new property syntax differs.
Replace existing instances of
RAMStyle with the correct
RAMArchitecture syntax.

GainImpls Error ConstMultiplierOptimization The new property syntax differs.

Replace existing instances of
GainImpls with the correct
ConstMultiplierOptimization
syntax.

14-3

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3

R2013a

Block Enhancements

Single rate Newton-Raphson architecture for Sqrt, Reciprocal
Sqrt

The Sqrt, Reciprocal Sqrt, reciprocal Divide, and reciprocal Math Function blocks now
have a single-rate pipelined architecture. The new architecture enables you to use the
high-speed Newton-Raphson algorithm without multirate or overclocking.

The following table lists each block with its new block implementation.

Block Implementation Name Details
Sqrt SqrtNewtonSingleRate |See Sqrt.
Reciprocal Sqrt RecipSqrtNewtonSingle |See Reciprocal Sqrt.
Rate
Divide (reciprocal) RecipNewtonSingleRate |[See Divide (reciprocal).
Math Function (reciprocal) |RecipNewtonSingleRate |See Math Function
(reciprocal).

Additional System objects supported for code generation

Effective with this release, the following System objects provide HDL code generation:

e comm.HDLCRCGenerator
* comm.HDLCRCDetector
* comm.HDLRSEncoder

* comm.HDLRSDecoder

* dsp.HDLNCO

Additional blocks supported for code generation

The following blocks are now supported for HDL code generation:

* NCO HDL Optimized
e Bias

14-4

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusosf
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusort
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso3m
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso08
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso08
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcgeneratorclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcdetectorclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsencoderclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsdecoderclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.hdlncoclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/bias.html

Block Enhancements

Relay

Dot Product

Sum with more than two inputs with different signs
MinMax with multiple input data types

14-5

https://www.mathworks.com/help/releases/R2013a/simulink/slref/relay.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/dotproduct.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/sum.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/minmax.html

R2013a

Code Generation and Verification

Static range analysis for floating-point to fixed-point
conversion

The coder can now use static range analysis to derive fixed-point data types for your
floating-point MATLAB code.

The redesigned interface for floating-point to fixed-point conversion enables you to use
simulation with multiple test benches, static range analysis, or both, to determine fixed-
point data types for your MATLAB variables.

For details, see Automated Fixed-Point Conversion.

Cosimulation and FPGA-in-the-Loop for MATLAB HDL code
generation

With the MATLAB HDL Workflow Advisor, the HDL Verification step includes automation
for the following workflows:

» Verify with HDL Test Bench: Create a standalone test bench. You can choose to
simulate a model using ModelSim or Incisive® with a vector file created by the
Workflow Advisor.

* Verify with Cosimulation: Cosimulate the DUT in ModelSim or Incisive with the test
bench in MATLAB.

* Verify with FPGA-in-the-Loop: Create the FPGA programming file and test bench, and,
optionally, download it to your selected development board.

You must have an HDL Verifier license to use these workflows.

HDL coding standard report and lint tool script generation

You can now generate a report that shows how well your generated HDL code conforms
to an industry coding standard. Errors and warnings in the report link to elements in your
original design so you can fix problems.

You can also generate third-party lint tool scripts to use to check your generated HDL
code. In this release, you can generate Leda, SpyGlass, and generic scripts.

14-6

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/fixed-point-conversion.html

Code Generation and Verification

To learn more about the coding standard report, see HDL Coding Standard Report.

To learn how to generate a coding standard report and lint tool script in the Simulink to
HDL workflow, see:

* Generate an HDL Coding Standard Report
* Generate an HDL Lint Tool Script

To learn how to generate a coding standard report and lint tool script in the MATLAB to
HDL workflow, see:

* Generate an HDL Coding Standard Report
* Generate an HDL Lint Tool Script

File I/O to read test bench data in Verilog

You can now specify the generated HDL test bench to use file [/O to read input stimulus
and output response data during simulation, instead of including data constants in the
test bench code. Doing so improves scalability for designs needing long simulations.

This feature is available when Verilog is the target language.

For details, see Test Bench Generation with File I/O.

14-7

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-a-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/test-bench-generation-with-file-io.html

R2013a

Speed and Area Optimizations

14-8

User-specified pipeline insertion for MATLAB variables

You can now specify pipeline register insertion for variables in your MATLAB code. This
feature is available in both the MATLAB to HDL workflow and the MATLAB Function
block.

To learn how to pipeline variables in the MATLAB to HDL workflow, see Pipeline MATLAB
Variables.

To learn how to pipeline variables in the MATLAB Function block, see Pipeline Variables
in the MATLAB Function Block.

Resource sharing and streaming without over clocking

You can now constrain the resource sharing and streaming optimizations to prevent or
reduce overclocking. The coder optimizes your design based on two parameters that you
specify: maximum oversampling ratio, MaxOversampling, and maximum computation
latency, MaxComputationLatency.

For single-rate resource sharing or streaming, you can set MaxOversampling to 1.

To learn more about constrained overclocking, maximum oversampling ratio, and
maximum computation latency, see:

* Optimization With Constrained Overclocking
* Maximum Oversampling Ratio
¢ Maximum Computation Latency

Resource sharing for the MATLAB Function block

You can now specify a resource sharing factor for the MATLAB Function block to share
multipliers in the MATLAB code.

For details, see Resource Sharing and Specify Resource Sharing.

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/insert-pipeline-registers-for-matlab-variables.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/insert-pipeline-registers-for-matlab-variables.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/optimization-without-overclocking.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-oversampling-ratio.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-computation-latency.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/specify-resource-sharing.html

Speed and Area Optimizations

Finer control for delay balancing
You can now disable delay balancing for a subsystem within your DUT subsystem.

For details, see Balance Delays.

Complex multiplication optimizations in the Product block
You can now share multipliers used in a single complex multiplication in the Product

block. Distributed pipelining can also move registers between the multiply and add stages
of a complex multiplication.

14-9

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/balance-delays.html

R2013a

IP Core Generation and Hardware Deployment

Generation of custom IP core with AXI4 interface

You can now generate custom IP cores with an AXI4-Lite or AXI4-Stream Video interface.
You can integrate these custom IP cores with your design in a Xilinx EDK environment for
the Xilinx Zyng-7000 Platform.

For more details, see Custom IP Core Generation.

To view an example that shows how to generate a custom IP core, at the command line,
enter:

hdlcoder ip core led blinking
Coprocessor synchronization in FPGA Turnkey and IP Core
Generation workflows

The coder can now automatically synchronize communication and data transfers between
your processor and FPGA. You can use the new Processor/FPGA synchronization mode
in the FPGA Turnkey workflow with xPC Target, or when you generate a custom IP core.

For more details, see Processor and FPGA Synchronization.
Speedgoat 10331 Spartan-6 FPGA board for FPGA Turnkey
workflow

You can now use the Speedgoat 10331 Spartan-6 FPGA board in the FPGA Turnkey
workflow with xPC Target.

You must have an xPC Target license to use this feature.

14-10

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/processor-and-fpga-synchronization.html

R2012b

Version: 3.1

New Features

R2012b

15-2

Input parameter constants and structures in floating-point to
fixed-point conversion

Floating-point to fixed-point conversion now supports structures and constant value
inputs.

RAM, biquad filter, and demodulator System objects
HDL RAM System object

With release 2012b, you can use the hd1lram System object for modeling and generating
fixed-point code for RAMs in FPGAs and ASICs. The hdlram System object provides
simulation capability in MATLAB for Dual Port, Simple Dual Port, and Single Port RAM.
The System object also generates RTL code that can be inferred as a RAM by most
synthesis tools.

To learn how to model and generate RAMs using the hdlram System object, see Model
and Generate RAM with hdlram.

HDL System object support for biquad filters

HDL support has been added for the following System object:
* dsp.BiquadFilter

HDL support with demodulator System objects

HDL support has been added for the following System objects:

* comm.BPSKDemodulator

* comm.QPSKDemodulator

* comm.PSKDemodulator

» comm.RectangularQAMDemodulator
» comm.RectangularQAMModulator

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html

IP Core Generation and Hardware Deployment

Generation of MATLAB Function block in the MATLAB to HDL
workflow

You can now generate a MATLAB Function block during the MATLAB to HDL workflow.
You can use the generated block for further design, simulation, and code generation in
Simulink.

For details, see MATLAB Function Block Generation.

HDL code generation for Reed Solomon encoder and decoder,
CRC detector, and multichannel Discrete FIR filter

HDL code generation

In R2012b, HDL code generation support has been added for the following blocks:
* General CRC Syndrome Detector HDL Optimized

For an example of using the HDL-optimized CRC generator and detector blocks, see
Using HDL Optimized CRC Library Blocks.

* Integer-Input RS Encoder HDL Optimized
* Integer-Output RS Decoder HDL Optimized

Multichannel Discrete FIR filters

The Discrete FIR Filter block accepts vector input and supports multichannel
implementation for better resource utilization.

* With vector input and channel sharing option on, the block supports multichannel fully
parallel FIR, including direct form FIR, sym/antisym FIR, and FIRT. Support for all
implementation parameters, for example: multiplier pipeline, add pipeline registers.

* With vector input and channel sharing option off, the block instantiates one filter
implementation for each channel. If the input vector size is N, N identical filters are
instantiated.

Applies to the fully parallel architecture option for FIR filters only.

15-3

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/matlab-function-block-generation.html

R2012b

15-4

Targeting of custom FPGA boards

The FPGA Board Manager and New FPGA Board Wizard allow you to add custom board
information so that you can use FIL simulation with an FPGA board that is not one of the
pre-registered boards. See FPGA Board Customization.

Optimizations for MATLAB Function blocks and black boxes

The resource sharing optimization now operates on MATLAB Function blocks. For details,
see Specify Resource Sharing.

The delay balancing and distributed pipelining optimizations now operate on black box

subsystems. To learn how to specify latency and enable distributed pipelining for a black
box subsystem, see Customize the Generated Interface.

Generate Xilinx System Generator Black Box block from
MATLAB

You can now generate a Xilinx System Generator Black Box block during the MATLAB-to-
HDL workflow. You can use the generated block for further design, simulation, and code
generation in Simulink.

For details, see Xilinx System Generator Black Box Block Generation.

Save and restore HDL-related model parameters

Two new functions, hdlsaveparams and hdlrestoreparams, enable you to save and
restore nondefault HDL-related model parameters. Using these functions, you can
perform multiple iterations on your design to optimize the generated code.

For details, see hdlsaveparams and hdlrestoreparams.

Command-line interface for MATLAB-to-HDL code generation

You can now convert your MATLAB code from floating-point to fixed-point and generate
HDL code using the command-line interface.

To learn how to use the command line interface, open the tutorial:

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/what-is-fpga-board-customization.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/specify-resource-sharing.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/customizing-the-generated-interface.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/xilinx-system-generator-black-box-block-generation.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlsaveparams.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlrestoreparams.html

IP Core Generation and Hardware Deployment

showdemo mlhdlc tutorial cli

User-specifiable clock enable toggle rate in test bench

You can now specify the clock enable toggle rate in your test bench to match your input
data rate or improve test coverage.

To learn how to specify your test bench clock enable toggle rate, see Test Bench Clock
Enable Toggle Rate Specification.

RAM mapping for dsp.Delay System object

The dsp.Delay System object now maps to RAM if the RAM mapping optimization is
enabled and the delay size meets the RAM mapping threshold.

To learn how to map the dsp.Delay System object to RAM, see Map Persistent Arrays
and dsp.Delay to RAM.

Code generation for Repeat block with multiple clocks

You can now generate code for the DSP System Toolbox Repeat block in a model with
multiple clocks.

Automatic verification with cosimulation using HDL Coder

With the HDL Coder HDL Workflow Advisor, you can automatically verify using your
Simulink test bench with the new verification step Run Cosimulation Test Bench.
During verification, the HDL Workflow Advisor and HDL Verifier verify the generated HDL
using cosimulation between the HDL Simulator and the Simulink test bench. See
Automatic Verification in the HDL Verifier documentation.

ML605 Board Added To Turnkey Workflow

The Xilinx Virtex-6 FPGA ML605 board has been added for Turnkey Workflow in the HDL
Workflow Advisor.

15-5

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html

R2012a

Version: 3.0
New Features

Compatibility Considerations

R2012a

16-2

Product Name Change and Extended Capability

HDL Coder replaces Simulink HDL Coder and adds the HDL code generation capability
directly from MATLAB.

To generate HDL code from MATLAB, you need the following products:

* HDL Coder

MATLAB Coder

* Fixed-Point Toolbox™
+ MATLAB

To generate HDL code from Simulink, you need the following products:

« HDL Coder
MATLAB Coder
* Fixed-Point Toolbox

¢ Simulink Fixed Point™

¢ Simulink
MATLAB

Code Generation from MATLAB

You can now generate HDL code directly from MATLAB code.
This workflow provides:

* Verilog or VHDL code generation from MATLAB code.

» Test bench generation from MATLAB scripts.

* Automated conversion from floating point code to fixed point code.

* Automated HDL verification through integration with ModelSim and ISim.

* HDL code generation for a subset of System objects from the Communications Toolbox
and DSP System Toolbox.

* A traceability report mapping generated HDL code to your original MATLAB code.

The MATLAB to HDL workflow provides the following automated HDL code optimizations:

IP Core Generation and Hardware Deployment

* Area optimizations: RAM mapping for persistent array variables, loop streaming,
resource sharing, and constant multiplier optimization.

* Speed optimizations: input pipelining, output pipelining, and distributed pipelining.

The coder can also generate a resource utilization report, with RAM usage and the
number of adders, multipliers, and muxes in your design.

See also HDL Code Generation from MATLAB.

Code Generation from Any Level of Subsystem Hierarchy

You can now generate HDL code from a subsystem at any level of the subsystem
hierarchy. In previous releases, you could generate HDL code from the top-level
subsystem only.

This feature also enables you to check any level subsystem for code generation
compatibility, and to automatically generate a testbench.

Automated Subsystem Hierarchy Flattening

You can now generate code with a flattened subsystem hierarchy, while preserving
hierarchy in nested subsystems.

This option enables you to perform more extensive area and speed optimization on the
flattened component. It also enables you to reduce the number of HDL output files.

See also Hierarchy Flattening.

Support for Discrete Transfer Fcn Block
You can now generate HDL code from the Discrete Transfer Fcn block.

For details, see Discrete Transfer Fcn Requirements and Restrictions.

User Option to Constrain Registers on Output Ports
A new property, ConstrainedOutputPipeline, enables you to specify the number of

registers you wish to have on an output port without introducing additional delay on the
input to output path. The coder redistributes existing delays within your design to try to

16-3

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bta01v0.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdbbiu.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bsmj7i0-1.html#btei_bh

R2012a

16-4

meet the constraint. This behavior is different from the OutputPipeline property, which
introduces additional delay on the input to output path.

If the coder is unable to meet the constraint using existing delays, it reports the
difference between the number of desired and actual output registers in the timing
report.

Distributed Pipelining for Sum of Elements, Product of
Elements, and MinMax Blocks

The Sum of Elements, Product of Elements, and MinMax blocks can now participate in
distributed pipelining if their architecture is set to Tree.

MATLAB Function Block Enhancements

Multiple Accesses to RAMs Mapped from Persistent Variables

You can now perform multiple reads and writes to a persistent variable, and the
persistent variable will still be mapped to RAM. In previous releases, a RAM mapped from
a persistent variable could be accessed only once.

Streaming for MATLAB Loops and Vector Operations

You can now perform streaming on MATLAB loops and loops created from vector
operations for improved area efficiency.

For details, see Loop Optimization.
Loop Unrolling for MATLAB Loops and Vector Operations

You can now unroll user-written MATLAB loops and loops created from vector operations.
This enables the coder to perform area and speed optimizations on the unrolled loops.

For details, see Loop Optimization.

Automated Code Generation from Xilinx System Generator for
DSP Blocks

You can now automatically generate HDL code from subsystems containing Xilinx System
Generator for DSP blocks.

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html

IP Core Generation and Hardware Deployment

For details, see Code Generation with Xilinx System Generator Subsystems.

Altera Quartus Il 11.0 Support in HDL Workflow Advisor

The HDL Workflow Advisor has now been tested with Altera Quartus II 11.0. In previous
releases, the HDL Workflow Advisor was tested with Altera Quartus II 9.1.

Automated Mapping to Xilinx and Altera Floating Point
Libraries

The coder can now map Simulink floating point operations to synthesizable floating point
Altera Megafunctions and Xilinx LogiCORE IP Floating Point Operator v5.0 blocks. To
learn more, see FPGA Target-Specific Floating-Point Library Mapping.

For a list of supported Altera Megafunction blocks, see Supported Altera Floating-Point
Library Blocks.

For a list of supported Xilinx LogicCORE IP blocks, see Supported Xilinx Floating-Point
Library Blocks.

Vector Data Type for PCI Interface Data Transfers Between
xPC Target and FPGA

In the FPGA Turnkey workflow, you can now use vector data types with the Scalarize
Vector Ports option to automatically generate PCI DMA transfers on the PCI interface
between xPC Target and FPGA. You no longer need to manually insert multiplexers,
demultiplexers and provide synchronization logic for vector data transfers.

If the Scalarize Vector Ports option is disabled when the code generation subsystem has
vector ports, the coder displays an error.

New Global Property to Select RAM Architecture

There is a new global property, RAMArchitecture, that enables you to generate RAMs
either with or without clock enables. This property applies to every RAM in your design,
and replaces the block level property, RAMStyle. By default, RAMs are generated with
clock enables.

To generate RAMs without clock enables, set RAMArchitecture to
'WithoutClockEnable'. To generate RAMs with clock enables, either use the default,

16-5

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btel3j3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1

R2012a

or set RAMArchitecture to 'WithClockEnable'. For more information, see Implement
RAMs With or Without Clock Enable.

Compatibility Considerations
The coder now ignores the block level property, RAMStyle.

If a block’s RAMStyle property is set, the coder generates a warning.

Turnkey Workflow for Altera Boards

HDL Workflow Advisor now supports Altera FPGA design software and the following
Altera development kits and boards:

* Altera Arria II GX FPGA development kit

* Altera Cyclone III FPGA development kit

» Altera Cyclone IV GX FPGA development kit

* Altera DE2-115 development and education board

This workflow has been tested with Altera Quartus II 11.0.

HDL Support For Bus Creator and Bus Selector Blocks

Release R2012a provides HDL code generation for the Bus Creator and Bus Selector
blocks. You must use these blocks for your buses if you want HDL support.

HDL Support For HDL CRC Generator Block

Release R2012a provides HDL code generation for the new HDL CRC Generator block.

HDL Support for Programmable Filter Coefficients

When using filter blocks to generate HDL code, you can specify coefficients from input
port(s). This feature applies to FIR and BiQuad filter blocks only. Fully Parallel and all
serial architectures are supported.

Follow these directions to use programmable filters:

16-6

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/brrdj5v-1.html#br7j5tp
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/brrdj5v-1.html#br7j5tp

IP Core Generation and Hardware Deployment

1 Select Input port(s) as coefficient source from the filter block mask.
Connect the coefficient port with a vector signal.

3 Specify the implementation architecture and parameters from the HDL Coder
property interface.

4 Generate HDL code.

Notes

For fully parallel implementations, the coefficients ports are connected to the
dedicated MAC directly.

For serial implementation, the coefficients ports first go to a mux, and then to the
MAC. The mux decides the coefficients that used at current time instant

For Discrete FIR filters, this feature is not supported under the following conditions:

+ Implementations having coefficients specified by dialog parameters (for example,
complex input and coefficients with serial architecture)

 Filters using DA architecture

* CoeffMultipliers specified as csd or factored-csd

For Biquad filters, this feature is not supported when CoeffMultipliers are specified as
csd or factored-csd.

Synchronous Multiclock Code Generation for CIC Decimators
and Interpolators

You can specify multiple clocks in one of the following ways:

Use the model-level parameter ClockInputs with the function makehdl and specify
the value as 'Multiple'.

In the Clock settings section of the Global Settings pane in the HDL Code Generation
Configuration Parameters dialog box, set Clock inputs to Multiple.

When you use single-clock mode, HDL code generated from multirate models uses a
single master clock that corresponds to the base rate of the DUT. When you use multiple-
clock mode, HDL code generated from multirate models use one clock input for each rate
in the DUT. The number of timing controllers generated in multiple-clock mode depends
on the design in the DUT.

16-7

R2012a

The ClockInputs parameter supports the values 'Single' and 'Multiple’, where the
default is 'Single'. In the default single-clock mode, the coder behavior is unchanged from
previous releases.

Filter Block Resource Report Participation

Resource reports include the HDL resource usage for filter blocks. The report includes
adders, subtractors, multipliers, multiplexers, registers. This feature covers all filter
blocks, and all implementations for the block.

You can turn on the report feature using the command line (ResourceReport) or GUI
(Generate resource utilization report). The following illustrations show a report for a
model that includes a Discrete FIR Filter block.

ﬂ test/dut * =aie X
File Edit View Simulation Format Tools Help
O=dS T2 4 100 |Normal -

num(z)
(D Cr—ep >)
ab

Input
Discrete FIR Filter

Constant

Output

Ready 125% FixedStepDiscrete

16-8

IP Core Generation and Hardware Deployment

@ High-level Resource Utilization Report for test . T — E=NEn X

File Edit View Go Debug Desktop Window Help

® =% O |2 | Location: filey//Hy/Documents/MATLAB/hdIsrc/html/test/test_bill_of_materialshtml

Resource Utilization Report for test =

Summary

Multipliers
Adders/Subtractors
Registers

RAMS

Multiplexers

wo Num M

Detailed Report

[Expand a11] [Collapse all]

Report for Subsystem: dut
Multipliers (2)
[-] 12x12-bit Multiply :

*ab

[-] 16x16-bit Multiply :

e Discrete FIR Filter

Adders/Subtractors (2)

m

[-] 32%32-bit Adder : 1
e Sum
[-] 34x34-bit Adder : 1

 Discrete FIR Filter

Registers (7)

32-bit Register : 1
[-] 16-bit Register : 4

e Discrete FIR Filter
[-] 33-bit Register : 2

 Discrete FIR Filter

Multiplexers (3)

[-] 33-bit 2-to-1 Multiplexer : 1
Discrete FIR Filter

[-] 16-bit 4-to-1 Multiplexer : 2

e Discrete FIR Filter

Done

HDL Block Properties Interface Allows Choice of Filter
Architecture

You can choose from several filter architectures for FIR Decimation and Discrete FIR
Filter blocks. Choices are:

* Fully Parallel
» Distributed Architecture (DA)

16-9

R2012a

* Fully Serial
» Party Serial
* Cascade Serial

The availability of architectures depends on the transfer function type and filter structure
of filter blocks. For Partly Serial and DA, specify at least SerialPartition and
DALUTPartition, respectively, so that these architectures are inferred. For example, if
you select Distributed Architecture (DA), make sure to also set DALUTPartition.

CIHDL Properties: Discrete FIR Filter

Implementation Implementation

Architecture ‘Fully Paraliel v| Architecture |Fu\ly Serial v‘
Implementation Parameters Implementation Parameters

AddPipelineRegisters [off v| | woutpigeline [a]
CoeffMultipliers ‘mulunlier v | MultiplierInputPipeline | 1] ‘
InputPipeline o | | muitpieroutputpipeline [0 |
MultiplierInputPipeline ‘ 1] CutputPipeline | o ‘

|
MultpierOutputPipeline [0 |
|

OutputPipeline o
I oK 1 [Cancel] [Help] [Apply] I OK 1 [Cancel] [Help] [Apply]
23
EIHDL Properties: Discrete FIR Filter X| EIHDL Properties: Discrete FIR Filter
Implementation Implementation
Architecture Partly Serizl v| J architecture | Cascade serial ¥
Implementation Parameters Implementation Parameters
InputPipeline o | | moutpipeline [a]
MultiplierInputFipeline ‘ 1] | MultiplierInputPipeline | o ‘
MultipierOutputPipeline |0 | | muitpieroutputpipeline [0 |
OutputPipeline o | | ocututpipeine [a]
SerialPartition ‘ -1 | SerialPartition | -1 ‘
l oK } [Cancel] [Help] [Apply] l oK } [Cancel] [Help] [Apply]
EIHDL Properties: D ete FIR e

Implementation

Architecture [Distributed Arithmetic (5A) |

Implementation Parameters

DALUTRartition [|
DARadix E |
InputPipeline ‘EI |
OutputPipeline o |
ok [canel J[e][acely

16-10

IP Core Generation and Hardware Deployment

HDL Support for FIR Filters With Serial Architectures and
Complex Inputs

HDL support for serial implementations of a FIR block with complex inputs.

HDL Support for External Reset Added for Proportional-
Integral-Derivative (PID) and Discrete Time Integrator (DTI)
Blocks

External reset support added for level mode.

16-11

